Robust estimator to deal with regression models having both continuous and categorical regressors: a simulation study
The Ordinary Least Squares (OLS) method has been the most popular technique for estimating the parameters of the multiple linear regression. However, in the presence of outliers and when the model includes both continuous and categorical (factor) variables, the OLS can result in poor estimates. In...
Principais autores: | A. Talib, Bashar, Midi, Habshah |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
Universiti Putra Malaysia Press
2009
|
Acesso em linha: | http://psasir.upm.edu.my/id/eprint/16589/1/16589.pdf |
Registros relacionados
-
The performance of robust estimator on linear regression
model having both continuous and categorical variables with
heteroscedastic errors
por: Midi, Habshah, et al.
Publicado em: (2008) -
Visual simulation approach in robust regression for models having both continuous and categorical variables in the presence of outliers and heteroscedasticity problems
por: A. Talib, Bashar, et al.
Publicado em: (2009) -
Robust Regression with Continuous and Categorical Variables Having Heteroscedastic Non-Normal Errors
por: Majeed Al-Talib, Bashar Abdul Aziz
Publicado em: (2006) -
Robust Estimation of a Linearized Nonlinear Regression Model
with Heteroscedastic Errors:A Simulation Study
por: Midi, Habshah
Publicado em: (1998) -
Robust estimators in logistic regression: A comparatives simulation study.
por: Midi, Habshah, et al.
Publicado em: (2010)