Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation

In this paper, we have developed a simple, low-cost, template-free and surfactant-free solvothermal process for synthesis of vanadyl hydrogen phosphate hemihydrate (VOHPO4·0.5H2O) with well defined crystal size. The synthesis was performed by reaction of VPO4·2H2O with an aliphatic alcohol (isobutyl...

Full description

Bibliographic Details
Main Authors: Rownaghi, Ali Asghar, Yap, Taufiq Yun Hin, Rezaei, Fateme
Format: Article
Language:English
Published: Elsevier 2009
Online Access:http://psasir.upm.edu.my/id/eprint/16780/1/Solvothermal%20synthesis%20of%20vanadium%20phosphate%20catalysts%20for%20n.pdf
_version_ 1796969123244146688
author Rownaghi, Ali Asghar
Yap, Taufiq Yun Hin
Rezaei, Fateme
author_facet Rownaghi, Ali Asghar
Yap, Taufiq Yun Hin
Rezaei, Fateme
author_sort Rownaghi, Ali Asghar
collection UPM
description In this paper, we have developed a simple, low-cost, template-free and surfactant-free solvothermal process for synthesis of vanadyl hydrogen phosphate hemihydrate (VOHPO4·0.5H2O) with well defined crystal size. The synthesis was performed by reaction of VPO4·2H2O with an aliphatic alcohol (isobutyl alcohol, 1-pentanol, 1-hexanol, 1-heptanol or 1-decanol). This afforded well crystallized VOHPO4·0.5H2O by solvothermal methods at 120 °C temperature. This new method significantly reduced the preparation time and lowered production temperature (50%) of catalyst precursor (VOHPO4·0.5H2O) when compared to conventional hydrothermal synthesis methods. By varying the reducing agent, the solvothermal evolution process from layered tetragonal phase VOPO4·2H2O to orthorhombic phase VOHPO4·0.5H2O was observed. It was found that the length of carbon chain in an alcohol in the solvothermal condition had a great impact on chemical and physical properties of resulting catalysts. Interestingly, there was no trace of VO(H2PO4)2 an impurity noted to be readily formed under solvothermal preparation condition. Therefore, this study introduces a more facile synthetic pathway to V(III) compounds. In addition, the microwave-synthesized catalysts exhibited some properties superior to those of conventionally synthesized catalyst such as better stability, crystallinity, and catalytic activity in the production of maleic anhydride. The characterization of both precursors and calcined catalysts was carried out using X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES), N2 physisorption, temperature programmed reduction (H2-TPR) and scanning electron microscopy (SEM). The XRD pattern of the active catalyst prepared by this solvothermal method confirmed the presence of smaller crystal size (between 6 and 13 nm along 0 2 0 planes) of vanadium phosphate catalyst with higher specific surface area. Finally, the yield of maleic anhydride was significantly increased from 29% for conventional catalyst to 44% for the new solvothermal catalyst.
first_indexed 2024-03-06T07:38:26Z
format Article
id upm.eprints-16780
institution Universiti Putra Malaysia
language English
last_indexed 2024-03-06T07:38:26Z
publishDate 2009
publisher Elsevier
record_format dspace
spelling upm.eprints-167802016-11-24T07:15:28Z http://psasir.upm.edu.my/id/eprint/16780/ Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation Rownaghi, Ali Asghar Yap, Taufiq Yun Hin Rezaei, Fateme In this paper, we have developed a simple, low-cost, template-free and surfactant-free solvothermal process for synthesis of vanadyl hydrogen phosphate hemihydrate (VOHPO4·0.5H2O) with well defined crystal size. The synthesis was performed by reaction of VPO4·2H2O with an aliphatic alcohol (isobutyl alcohol, 1-pentanol, 1-hexanol, 1-heptanol or 1-decanol). This afforded well crystallized VOHPO4·0.5H2O by solvothermal methods at 120 °C temperature. This new method significantly reduced the preparation time and lowered production temperature (50%) of catalyst precursor (VOHPO4·0.5H2O) when compared to conventional hydrothermal synthesis methods. By varying the reducing agent, the solvothermal evolution process from layered tetragonal phase VOPO4·2H2O to orthorhombic phase VOHPO4·0.5H2O was observed. It was found that the length of carbon chain in an alcohol in the solvothermal condition had a great impact on chemical and physical properties of resulting catalysts. Interestingly, there was no trace of VO(H2PO4)2 an impurity noted to be readily formed under solvothermal preparation condition. Therefore, this study introduces a more facile synthetic pathway to V(III) compounds. In addition, the microwave-synthesized catalysts exhibited some properties superior to those of conventionally synthesized catalyst such as better stability, crystallinity, and catalytic activity in the production of maleic anhydride. The characterization of both precursors and calcined catalysts was carried out using X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES), N2 physisorption, temperature programmed reduction (H2-TPR) and scanning electron microscopy (SEM). The XRD pattern of the active catalyst prepared by this solvothermal method confirmed the presence of smaller crystal size (between 6 and 13 nm along 0 2 0 planes) of vanadium phosphate catalyst with higher specific surface area. Finally, the yield of maleic anhydride was significantly increased from 29% for conventional catalyst to 44% for the new solvothermal catalyst. Elsevier 2009-12 Article PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/16780/1/Solvothermal%20synthesis%20of%20vanadium%20phosphate%20catalysts%20for%20n.pdf Rownaghi, Ali Asghar and Yap, Taufiq Yun Hin and Rezaei, Fateme (2009) Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation. Chemical Engineering Journal, 155 (1-2). pp. 514-522. ISSN 1385-8947; ESSN: 1873-3212 http://www.sciencedirect.com/science/article/pii/S1385894709005701 10.1016/j.cej.2009.07.055
spellingShingle Rownaghi, Ali Asghar
Yap, Taufiq Yun Hin
Rezaei, Fateme
Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation
title Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation
title_full Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation
title_fullStr Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation
title_full_unstemmed Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation
title_short Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation
title_sort solvothermal synthesis of vanadium phosphate catalysts for n butane oxidation
url http://psasir.upm.edu.my/id/eprint/16780/1/Solvothermal%20synthesis%20of%20vanadium%20phosphate%20catalysts%20for%20n.pdf
work_keys_str_mv AT rownaghialiasghar solvothermalsynthesisofvanadiumphosphatecatalystsfornbutaneoxidation
AT yaptaufiqyunhin solvothermalsynthesisofvanadiumphosphatecatalystsfornbutaneoxidation
AT rezaeifateme solvothermalsynthesisofvanadiumphosphatecatalystsfornbutaneoxidation