Synthesis, antibacterial and thermal studies of cellulose nanocrystal stabilized ZnO-Ag heterostructure nanoparticles

Synthesis of ZnO-Ag heterostructure nanoparticles was carried out by a precipitation method with cellulose nanocrystals (CNCs) as a stabilizer for antimicrobial and thermal studies. ZnO-Ag nanoparticles were obtained from various weight percentages of added AgNO3 relative to Zn precursors for evalua...

Full description

Bibliographic Details
Main Authors: Azizi, Susan, Ahmad, Mansor, Hussein, Mohd Zobir, Ibrahim, Nor Azowa
Format: Article
Language:English
English
Published: Multidisciplinary Digital Publishing Institute 2013
Online Access:http://psasir.upm.edu.my/id/eprint/30061/1/1Synthesis.pdf
Description
Summary:Synthesis of ZnO-Ag heterostructure nanoparticles was carried out by a precipitation method with cellulose nanocrystals (CNCs) as a stabilizer for antimicrobial and thermal studies. ZnO-Ag nanoparticles were obtained from various weight percentages of added AgNO3 relative to Zn precursors for evaluating the best composition with enhanced functional properties. The ZnO-Ag/CNCs samples were characterized systematically by TEM, XRD, UV, TGA and DTG. From the TEM studies we observed that ZnO-Ag heterostructure nanoparticles have spherical shapes with size diameters in a 9–35 nm range. The antibacterial activities of samples were assessed against the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The CNC-stabilized ZnO-Ag exhibited greater bactericidal activity compared to cellulose-free ZnO-Ag heterostructure nanoparticles of the same particle size. The incorporation of ZnO-Ag hetreostructure nanoparticles significantly increased the thermal stability of cellulose nanocrystals.