Structural, magnetic and dielectric properties of FeշO3-TeOշ glass with starting materials of different particle size

Tellurite based glasses have physical properties that are important for both fundamental and practical applications which are low melting temperature, high dielectric constant,high refractive index, good infrared transmittance and high chemical durability while oxide glass with iron oxide are import...

Full description

Bibliographic Details
Main Author: Nadakkavil Alassan, Zarifah
Format: Thesis
Language:English
Published: 2012
Subjects:
Online Access:http://psasir.upm.edu.my/id/eprint/33139/1/FS%202012%2066R.pdf
_version_ 1825948211370524672
author Nadakkavil Alassan, Zarifah
author_facet Nadakkavil Alassan, Zarifah
author_sort Nadakkavil Alassan, Zarifah
collection UPM
description Tellurite based glasses have physical properties that are important for both fundamental and practical applications which are low melting temperature, high dielectric constant,high refractive index, good infrared transmittance and high chemical durability while oxide glass with iron oxide are important due to their magnetic, optical and electrical properties. Hence we proposed to study the structural, magnetic and dielectric properties of Fe2O3-TeO2 glass with different particle size of the starting materials. Glasses in a wide range of composition in the binary system (Fe2O3)x-(TeO2)1-x where x ranges from 0.10 to 0.30 in the interval of 0.05 have been prepared using different sizes of the starting materials by conventional melt quenching technique with Fe2O3 and TeO2 as the starting raw materials. All the glasses in the present work have been confirmed to be amorphous by X-Ray diffraction (XRD) analysis. The short range structures of those binary glasses were examined by Fourier-transform infrared (FTIR) spectroscopy. The density of the glasses was determined by Archimedes Principle. From the empirical data, molar volumes have been computed. Glass stability and glass forming ability was determined using Differential Thermal Analysis (DTA) curve. Magnetic measurement has been performed at room temperature using vibrating sample magnetometer (VSM). The dielectric properties of the samples were also measured using Novocontrol Novotherm High Dielectric Resolution Analyser. The density of the FT series decreases from 5.26 gcm-3 to 5.09 gcm-3 while FTN series decrease from 5.37 gcm-3 to 5.06 gcm-3 with the addition of Fe2O3 due to the replacement of high density TeO2 with Fe2O3. The molar volume of the glass samples shows a reverse trend compared to the density which increases with increasing Fe2O3 where FT series increase from 30.28 cm3 mol-1 to 31.18 cm3 mol-1 and FTN series increase from 29.71 cm3 mol-1 to 31.35 cm3 mol-1. The magnetization analysis shows that all samples have soft magnetic properties. FT glass series were found to exhibit paramagnetic behavior. Binary samples using nano material with x=0.30 has paramagnetic behavior with contribution of superparamagnetic behaviour. The results show that the dielectric permittivity and dielectric loss decrease with frequency and increase with temperature. The behavior of dielectric curves was modeled using equivalent RC circuit consisting combinations of dispersion barrier C*A, quasi – dc, C*B, resistance R, and non dispersive capacitance C∞. The conductivity plot shows two regions, dispersive and flat. This is due to the DC conduction and hopping mechanism. The hopping will take place between the Fe2+ and Fe3+ ions (Fe2+ → Fe3+ + e−) among the different factors, which influence the conductivity.
first_indexed 2024-03-06T08:25:13Z
format Thesis
id upm.eprints-33139
institution Universiti Putra Malaysia
language English
last_indexed 2024-03-06T08:25:13Z
publishDate 2012
record_format dspace
spelling upm.eprints-331392015-03-09T08:16:41Z http://psasir.upm.edu.my/id/eprint/33139/ Structural, magnetic and dielectric properties of FeշO3-TeOշ glass with starting materials of different particle size Nadakkavil Alassan, Zarifah Tellurite based glasses have physical properties that are important for both fundamental and practical applications which are low melting temperature, high dielectric constant,high refractive index, good infrared transmittance and high chemical durability while oxide glass with iron oxide are important due to their magnetic, optical and electrical properties. Hence we proposed to study the structural, magnetic and dielectric properties of Fe2O3-TeO2 glass with different particle size of the starting materials. Glasses in a wide range of composition in the binary system (Fe2O3)x-(TeO2)1-x where x ranges from 0.10 to 0.30 in the interval of 0.05 have been prepared using different sizes of the starting materials by conventional melt quenching technique with Fe2O3 and TeO2 as the starting raw materials. All the glasses in the present work have been confirmed to be amorphous by X-Ray diffraction (XRD) analysis. The short range structures of those binary glasses were examined by Fourier-transform infrared (FTIR) spectroscopy. The density of the glasses was determined by Archimedes Principle. From the empirical data, molar volumes have been computed. Glass stability and glass forming ability was determined using Differential Thermal Analysis (DTA) curve. Magnetic measurement has been performed at room temperature using vibrating sample magnetometer (VSM). The dielectric properties of the samples were also measured using Novocontrol Novotherm High Dielectric Resolution Analyser. The density of the FT series decreases from 5.26 gcm-3 to 5.09 gcm-3 while FTN series decrease from 5.37 gcm-3 to 5.06 gcm-3 with the addition of Fe2O3 due to the replacement of high density TeO2 with Fe2O3. The molar volume of the glass samples shows a reverse trend compared to the density which increases with increasing Fe2O3 where FT series increase from 30.28 cm3 mol-1 to 31.18 cm3 mol-1 and FTN series increase from 29.71 cm3 mol-1 to 31.35 cm3 mol-1. The magnetization analysis shows that all samples have soft magnetic properties. FT glass series were found to exhibit paramagnetic behavior. Binary samples using nano material with x=0.30 has paramagnetic behavior with contribution of superparamagnetic behaviour. The results show that the dielectric permittivity and dielectric loss decrease with frequency and increase with temperature. The behavior of dielectric curves was modeled using equivalent RC circuit consisting combinations of dispersion barrier C*A, quasi – dc, C*B, resistance R, and non dispersive capacitance C∞. The conductivity plot shows two regions, dispersive and flat. This is due to the DC conduction and hopping mechanism. The hopping will take place between the Fe2+ and Fe3+ ions (Fe2+ → Fe3+ + e−) among the different factors, which influence the conductivity. 2012-08 Thesis NonPeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/33139/1/FS%202012%2066R.pdf Nadakkavil Alassan, Zarifah (2012) Structural, magnetic and dielectric properties of FeշO3-TeOշ glass with starting materials of different particle size. Masters thesis, Universiti Putra Malaysia. Glass - Magnetic properties Glass - Electric properties Glass
spellingShingle Glass - Magnetic properties
Glass - Electric properties
Glass
Nadakkavil Alassan, Zarifah
Structural, magnetic and dielectric properties of FeշO3-TeOշ glass with starting materials of different particle size
title Structural, magnetic and dielectric properties of FeշO3-TeOշ glass with starting materials of different particle size
title_full Structural, magnetic and dielectric properties of FeշO3-TeOշ glass with starting materials of different particle size
title_fullStr Structural, magnetic and dielectric properties of FeշO3-TeOշ glass with starting materials of different particle size
title_full_unstemmed Structural, magnetic and dielectric properties of FeշO3-TeOշ glass with starting materials of different particle size
title_short Structural, magnetic and dielectric properties of FeշO3-TeOշ glass with starting materials of different particle size
title_sort structural magnetic and dielectric properties of feշo3 teoշ glass with starting materials of different particle size
topic Glass - Magnetic properties
Glass - Electric properties
Glass
url http://psasir.upm.edu.my/id/eprint/33139/1/FS%202012%2066R.pdf
work_keys_str_mv AT nadakkavilalassanzarifah structuralmagneticanddielectricpropertiesoffešo3teošglasswithstartingmaterialsofdifferentparticlesize