The application of simple errors in variables model on real data
The Ordinary Least Squares (OLS) method is the most widely used method to estimate the parameters of regression model. One of the critical assumption of the OLS estimation method is that the regression variables are measured without error. However, in many practical situations this assumption is of...
Auteurs principaux: | Mohammadi, Mandana, Midi, Habshah, Rana, Sohel, Arasan, Jayanthi |
---|---|
Format: | Conference or Workshop Item |
Publié: |
IEEE
|
Documents similaires
-
Bootstrap based diagnostics for survival regression model with interval and right-censored data
par: Arasan, Jayanthi, et autres
Publié: (2022) -
Modified outlier diagnostics for the extended exponential regression model with interval and right-censored data
par: Arasan, Jayanthi, et autres
Publié: (2024) -
Detection of outliers in the response and explanatory variables of the simple circular regression model
par: Mahmood, Ehab A., et autres
Publié: (2016) -
Robust detection of outliers in both response and explanatory variables of the simple circular regression model
par: Rana, Sohel, et autres
Publié: (2016) -
On the robust parameter estimation for linear model with autocorrelated errors
par: Midi, Habshah, et autres
Publié: (2013)