Aquilaria malaccensis polyploids as improved planting materials

Aquilaria malaccensis is an agarwood-producing timber species used in many traditional remedies and modern therapeutic treatments and perfume industries. In this study, we aimed to enhance A. malaccensis phytochemical content through in-vitro polyploidisation. Shoot tip and nodal segment from 8-week...

Full description

Bibliographic Details
Main Authors: A. Rahman, Siti Suhaila, Mohd Saleh, Norihan, Muhammad, Norwati, Mohamad Ali, Nor Azah, Mansor Clyde, Mahani, Namasivayam, Parameswari, Kodi, I. K., Jamil, Mailina, Azlan, Azrina, Hassan, Nor Hasnida, Ismail, Haliza, Abdullah, Nazirah, Yahya, Muhammad Fuad
Format: Article
Language:English
Published: Forest Research Institute Malaysia 2015
Online Access:http://psasir.upm.edu.my/id/eprint/42290/1/Aquilaria%20malaccensis%20polyploids%20as%20improved%20planting%20materials.pdf
Description
Summary:Aquilaria malaccensis is an agarwood-producing timber species used in many traditional remedies and modern therapeutic treatments and perfume industries. In this study, we aimed to enhance A. malaccensis phytochemical content through in-vitro polyploidisation. Shoot tip and nodal segment from 8-week-old in-vitro A. malaccensis plantlets were treated with different concentrations of colchicine and trifluralin at various exposure times to obtain polyploids. Tetraploid plantlets (10%) was obtained using nodal segment explants treated with 0.1 mM trifluralin at 120 hours. Chemical profiling of diploid and tetraploid samples (leaf, stem and root) was evaluated separately using headspace-solid phase microextraction (HS-SPME) combined with gas chromatograph mass spectrometry (GCMS). Phytochemical content increased in tetraploid, particularly in stem whereby the total phytochemical contents were 43.19% in tetraploid compared with 5.87% in diploid. The HS-SPME-GCMS analyses showed that tetraploid stem contained high levels of sesquiterpenoids found in agarwood oil such as α-eudesmol (18.3%), α-gurjunene (8.61%) and γ-gurjunene (6.22%). On the other hand, aromadendrene (2.49%) and α-humulene (3.38%) were detected in diploid samples. Tetraploid leaf samples were observed to contain α-humulene (3.79%) while diploid only contained (2E) tridecenol (19%). There were no significant differences between diploid and tetraploid in terms of total phytochemical content in root samples. Nevertheless, high sesquiterpenoid content, γ-gurjunene (14.0%), was detected in tetraploid sample while γ-muurolene (2.96%), in diploid. α-Guaiene content was higher in root samples of diploid (6.49%) than tetraploid (1.09%). These results demonstrated that tetraploid plantlets led to higher yield of total phytochemical content and might facilitate production of high quality A. malaccensis clones.