Poincare polynomials for Abelian symplectic quotients of pure r-qubits via wall-crossings

In this paper, we compute a recursive wall-crossing formula for the Poincaré polynomials and Euler characteristics of Abelian symplectic quotients of a complex projective manifold under a special effective action of a torus with non-trivial characters. An analogy can be made with the space of pure s...

Full description

Bibliographic Details
Main Authors: Molladavoudi, Saeid, Zainuddin, Hishamuddin
Format: Article
Language:English
Published: Elsevier 2015
Online Access:http://psasir.upm.edu.my/id/eprint/45888/1/POIN.pdf
_version_ 1796974587890630656
author Molladavoudi, Saeid
Zainuddin, Hishamuddin
author_facet Molladavoudi, Saeid
Zainuddin, Hishamuddin
author_sort Molladavoudi, Saeid
collection UPM
description In this paper, we compute a recursive wall-crossing formula for the Poincaré polynomials and Euler characteristics of Abelian symplectic quotients of a complex projective manifold under a special effective action of a torus with non-trivial characters. An analogy can be made with the space of pure states of a composite quantum system containing -quantum bits under action of the maximal torus of Local Unitary operations.
first_indexed 2024-03-06T08:59:13Z
format Article
id upm.eprints-45888
institution Universiti Putra Malaysia
language English
last_indexed 2024-03-06T08:59:13Z
publishDate 2015
publisher Elsevier
record_format dspace
spelling upm.eprints-458882021-04-29T02:39:20Z http://psasir.upm.edu.my/id/eprint/45888/ Poincare polynomials for Abelian symplectic quotients of pure r-qubits via wall-crossings Molladavoudi, Saeid Zainuddin, Hishamuddin In this paper, we compute a recursive wall-crossing formula for the Poincaré polynomials and Euler characteristics of Abelian symplectic quotients of a complex projective manifold under a special effective action of a torus with non-trivial characters. An analogy can be made with the space of pure states of a composite quantum system containing -quantum bits under action of the maximal torus of Local Unitary operations. Elsevier 2015-10 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/45888/1/POIN.pdf Molladavoudi, Saeid and Zainuddin, Hishamuddin (2015) Poincare polynomials for Abelian symplectic quotients of pure r-qubits via wall-crossings. Journal of Geometry and Physics, 96. pp. 26-35. ISSN 0393-0440 https://www.sciencedirect.com/science/article/pii/S0393044015001217#! 10.1016/j.geomphys.2015.05.009
spellingShingle Molladavoudi, Saeid
Zainuddin, Hishamuddin
Poincare polynomials for Abelian symplectic quotients of pure r-qubits via wall-crossings
title Poincare polynomials for Abelian symplectic quotients of pure r-qubits via wall-crossings
title_full Poincare polynomials for Abelian symplectic quotients of pure r-qubits via wall-crossings
title_fullStr Poincare polynomials for Abelian symplectic quotients of pure r-qubits via wall-crossings
title_full_unstemmed Poincare polynomials for Abelian symplectic quotients of pure r-qubits via wall-crossings
title_short Poincare polynomials for Abelian symplectic quotients of pure r-qubits via wall-crossings
title_sort poincare polynomials for abelian symplectic quotients of pure r qubits via wall crossings
url http://psasir.upm.edu.my/id/eprint/45888/1/POIN.pdf
work_keys_str_mv AT molladavoudisaeid poincarepolynomialsforabeliansymplecticquotientsofpurerqubitsviawallcrossings
AT zainuddinhishamuddin poincarepolynomialsforabeliansymplecticquotientsofpurerqubitsviawallcrossings