Upper bound of fractional differential operator related to univalent functions
In this article, we defined the generalized fractional differential Tremblay operator in the open unit disk that by usage the definition of the generalized Srivastava–Owa operator. In particular, we established a new operator denoted by Θβ,τ,γz based on the normalized generalized fractional differen...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer
2016
|
Online Access: | http://psasir.upm.edu.my/id/eprint/53201/1/Upper%20bound%20of%20fractional%20differential%20operator%20related%20to%20univalent%20functions.pdf |
Summary: | In this article, we defined the generalized fractional differential Tremblay operator in the open unit disk that by usage the definition of the generalized Srivastava–Owa operator. In particular, we established a new operator denoted by Θβ,τ,γz based on the normalized generalized fractional differential operator and represented by convolution product. Moreover, we studied the coefficient criteria of univalence, starlikeness and convexity for the last operator mentioned. |
---|