Low-distortion MMSE speech enhancement estimator based on laplacian prior

The most well-known conventional speech enhancement algorithms introduce unwanted artifact noise and speech distortion to the enhanced signal. Reducing the effects of such issues require more robust linear and non-linear estimators. This paper proposes new optimum linear and non-linear Laplacian...

Full description

Bibliographic Details
Main Authors: Mahmmod, Basheera M., Ramli, Abd Rahman, Abdulhussain, Sadiq H., Syed Mohamed, Syed Abdul Rahman Al-Haddad, A. Jassim, Wissam
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers 2017
Online Access:http://psasir.upm.edu.my/id/eprint/62322/1/Low-distortion%20MMSE%20speech%20enhancement%20estimator%20based%20on%20laplacian%20prior.pdf
_version_ 1796977608816066560
author Mahmmod, Basheera M.
Ramli, Abd Rahman
Abdulhussain, Sadiq H.
Syed Mohamed, Syed Abdul Rahman Al-Haddad
A. Jassim, Wissam
author_facet Mahmmod, Basheera M.
Ramli, Abd Rahman
Abdulhussain, Sadiq H.
Syed Mohamed, Syed Abdul Rahman Al-Haddad
A. Jassim, Wissam
author_sort Mahmmod, Basheera M.
collection UPM
description The most well-known conventional speech enhancement algorithms introduce unwanted artifact noise and speech distortion to the enhanced signal. Reducing the effects of such issues require more robust linear and non-linear estimators. This paper proposes new optimum linear and non-linear Laplacian distribution-based estimators. The proposed estimators are derived based on a minimum mean squared error (MMSE) sense to minimize the distortion in different conditions of the underlying speech. Thus, artifact noise is reduced without compromising the noise reduction process. The analytical solutions of the Laplacian distribution-based estimators, linear bilateral Laplacian gain estimator (LBLG), and nonlinear bilateral Laplacian gain estimator (NBLG), are presented. The proposed estimators are implemented in three steps. First, the observation signal is decorrelated through a real transform domain to obtain its transform coefficients. Second, the proposed estimators are applied to estimate the clean speech signal from the noisy signal in the decorrelated domain. Finally, the inverse of the real transform is applied to obtain the original speech signal in the time domain. Two conditions in these estimators account for interference events between the speech signal and noise coefficients in the decorrelated domain. Moreover, a mathematical aspect of mean square error of LBLG is evaluated, which presents a significant improvement over other methods. Furthermore, a comprehensive description of the whole variations of the LBLG and NBLG gains characteristics is presented. A comparative evaluation is performed with effective quality metrics, segmental signal-to-noise ratio and perceptual evaluation of speech quality, to demonstrate the advantage and effectiveness of the proposed estimators. The performance of the proposed estimators outperformed other methods, which are the traditional MMSE approach, perceptually motivated Bayesian estimator, dual gain Wiener estimator, and dual MMSE estimator in terms of different objective measurements.
first_indexed 2024-03-06T09:42:35Z
format Article
id upm.eprints-62322
institution Universiti Putra Malaysia
language English
last_indexed 2024-03-06T09:42:35Z
publishDate 2017
publisher Institute of Electrical and Electronics Engineers
record_format dspace
spelling upm.eprints-623222019-10-31T04:19:22Z http://psasir.upm.edu.my/id/eprint/62322/ Low-distortion MMSE speech enhancement estimator based on laplacian prior Mahmmod, Basheera M. Ramli, Abd Rahman Abdulhussain, Sadiq H. Syed Mohamed, Syed Abdul Rahman Al-Haddad A. Jassim, Wissam The most well-known conventional speech enhancement algorithms introduce unwanted artifact noise and speech distortion to the enhanced signal. Reducing the effects of such issues require more robust linear and non-linear estimators. This paper proposes new optimum linear and non-linear Laplacian distribution-based estimators. The proposed estimators are derived based on a minimum mean squared error (MMSE) sense to minimize the distortion in different conditions of the underlying speech. Thus, artifact noise is reduced without compromising the noise reduction process. The analytical solutions of the Laplacian distribution-based estimators, linear bilateral Laplacian gain estimator (LBLG), and nonlinear bilateral Laplacian gain estimator (NBLG), are presented. The proposed estimators are implemented in three steps. First, the observation signal is decorrelated through a real transform domain to obtain its transform coefficients. Second, the proposed estimators are applied to estimate the clean speech signal from the noisy signal in the decorrelated domain. Finally, the inverse of the real transform is applied to obtain the original speech signal in the time domain. Two conditions in these estimators account for interference events between the speech signal and noise coefficients in the decorrelated domain. Moreover, a mathematical aspect of mean square error of LBLG is evaluated, which presents a significant improvement over other methods. Furthermore, a comprehensive description of the whole variations of the LBLG and NBLG gains characteristics is presented. A comparative evaluation is performed with effective quality metrics, segmental signal-to-noise ratio and perceptual evaluation of speech quality, to demonstrate the advantage and effectiveness of the proposed estimators. The performance of the proposed estimators outperformed other methods, which are the traditional MMSE approach, perceptually motivated Bayesian estimator, dual gain Wiener estimator, and dual MMSE estimator in terms of different objective measurements. Institute of Electrical and Electronics Engineers 2017 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/62322/1/Low-distortion%20MMSE%20speech%20enhancement%20estimator%20based%20on%20laplacian%20prior.pdf Mahmmod, Basheera M. and Ramli, Abd Rahman and Abdulhussain, Sadiq H. and Syed Mohamed, Syed Abdul Rahman Al-Haddad and A. Jassim, Wissam (2017) Low-distortion MMSE speech enhancement estimator based on laplacian prior. IEEE Access, 5. 9866 - 9881. ISSN 2169-3536 https://ieeexplore.ieee.org/document/7914629
spellingShingle Mahmmod, Basheera M.
Ramli, Abd Rahman
Abdulhussain, Sadiq H.
Syed Mohamed, Syed Abdul Rahman Al-Haddad
A. Jassim, Wissam
Low-distortion MMSE speech enhancement estimator based on laplacian prior
title Low-distortion MMSE speech enhancement estimator based on laplacian prior
title_full Low-distortion MMSE speech enhancement estimator based on laplacian prior
title_fullStr Low-distortion MMSE speech enhancement estimator based on laplacian prior
title_full_unstemmed Low-distortion MMSE speech enhancement estimator based on laplacian prior
title_short Low-distortion MMSE speech enhancement estimator based on laplacian prior
title_sort low distortion mmse speech enhancement estimator based on laplacian prior
url http://psasir.upm.edu.my/id/eprint/62322/1/Low-distortion%20MMSE%20speech%20enhancement%20estimator%20based%20on%20laplacian%20prior.pdf
work_keys_str_mv AT mahmmodbasheeram lowdistortionmmsespeechenhancementestimatorbasedonlaplacianprior
AT ramliabdrahman lowdistortionmmsespeechenhancementestimatorbasedonlaplacianprior
AT abdulhussainsadiqh lowdistortionmmsespeechenhancementestimatorbasedonlaplacianprior
AT syedmohamedsyedabdulrahmanalhaddad lowdistortionmmsespeechenhancementestimatorbasedonlaplacianprior
AT ajassimwissam lowdistortionmmsespeechenhancementestimatorbasedonlaplacianprior