Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+)
In this study, the conversion of methane and carbon dioxide to synthesis gas using dry reforming of methane over Ni, Pd, and Pt/MgO catalysts in different concentrations of Ce3+, Ce4+and Ni2+ was prepared via the co-precipitation of Mg and Ce nitrates, followed by impregnation with 1 wt.% each of Ni...
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | http://psasir.upm.edu.my/id/eprint/65445/1/FS%202016%202IR%281%29.pdf |
_version_ | 1825932945273126912 |
---|---|
author | Jassim Aldoghachi, Faris Abdulridha |
author_facet | Jassim Aldoghachi, Faris Abdulridha |
author_sort | Jassim Aldoghachi, Faris Abdulridha |
collection | UPM |
description | In this study, the conversion of methane and carbon dioxide to synthesis gas using dry reforming of methane over Ni, Pd, and Pt/MgO catalysts in different concentrations of Ce3+, Ce4+and Ni2+ was prepared via the co-precipitation of Mg and Ce nitrates, followed by impregnation with 1 wt.% each of Ni, Pd, and Pt metals to form Pt/Mg1- xNixO, Pd/Mg1-xCe3+ xO, Pd/Mg1-xCe4+ xO and Ni,Pd,Pt/Mg1-xCexO catalysts. The goal of this study was to prepare a catalyst with high activity and selectivity which prevent the carbon deposition onto the catalyst during the syngas production. The performance of metal / magnesia-promoter catalysts in syngas production and the factors influencing carbon deposition during reaction were also investigated. The produced catalysts were characterized using various kinds of analytical techniques. The Ni,Pd,Pt/Mg1-x Cex 3+O catalyst with cubic structure was synthesized using the coprecipitation method which showed good selectivity for dry reforming of methane reaction with CO2 and CH4 conversion rates of 99% and 84%, respectively, at ratio CO2:CH4, 1:1 at 900 °C. They also showed good thermal stability for the first 200h. and also, great potential for use in fuel processing. This catalyst also increased the activity & stability of DRM reaction by adding a small concentration of O2, which resulted in a combination of combustion and reforming reaction that made the overall process thermo-neutral and helped in limiting carbon formation. |
first_indexed | 2024-03-06T09:49:43Z |
format | Thesis |
id | upm.eprints-65445 |
institution | Universiti Putra Malaysia |
language | English |
last_indexed | 2024-03-06T09:49:43Z |
publishDate | 2016 |
record_format | dspace |
spelling | upm.eprints-654452018-10-31T04:01:35Z http://psasir.upm.edu.my/id/eprint/65445/ Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+) Jassim Aldoghachi, Faris Abdulridha In this study, the conversion of methane and carbon dioxide to synthesis gas using dry reforming of methane over Ni, Pd, and Pt/MgO catalysts in different concentrations of Ce3+, Ce4+and Ni2+ was prepared via the co-precipitation of Mg and Ce nitrates, followed by impregnation with 1 wt.% each of Ni, Pd, and Pt metals to form Pt/Mg1- xNixO, Pd/Mg1-xCe3+ xO, Pd/Mg1-xCe4+ xO and Ni,Pd,Pt/Mg1-xCexO catalysts. The goal of this study was to prepare a catalyst with high activity and selectivity which prevent the carbon deposition onto the catalyst during the syngas production. The performance of metal / magnesia-promoter catalysts in syngas production and the factors influencing carbon deposition during reaction were also investigated. The produced catalysts were characterized using various kinds of analytical techniques. The Ni,Pd,Pt/Mg1-x Cex 3+O catalyst with cubic structure was synthesized using the coprecipitation method which showed good selectivity for dry reforming of methane reaction with CO2 and CH4 conversion rates of 99% and 84%, respectively, at ratio CO2:CH4, 1:1 at 900 °C. They also showed good thermal stability for the first 200h. and also, great potential for use in fuel processing. This catalyst also increased the activity & stability of DRM reaction by adding a small concentration of O2, which resulted in a combination of combustion and reforming reaction that made the overall process thermo-neutral and helped in limiting carbon formation. 2016-01 Thesis NonPeerReviewed text en http://psasir.upm.edu.my/id/eprint/65445/1/FS%202016%202IR%281%29.pdf Jassim Aldoghachi, Faris Abdulridha (2016) Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+). Doctoral thesis, Universiti Putra Malaysia. Catalyst supports Methane |
spellingShingle | Catalyst supports Methane Jassim Aldoghachi, Faris Abdulridha Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+) |
title | Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+) |
title_full | Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+) |
title_fullStr | Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+) |
title_full_unstemmed | Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+) |
title_short | Enhancement of dry reforming of methane for syngas production over M/Mg1-XM’xO catalysts (M=Ni, Pd, and Pt., M’=Ce3+, Ce4+, and Ni2+) |
title_sort | enhancement of dry reforming of methane for syngas production over m mg1 xm xo catalysts m ni pd and pt m ce3 ce4 and ni2 |
topic | Catalyst supports Methane |
url | http://psasir.upm.edu.my/id/eprint/65445/1/FS%202016%202IR%281%29.pdf |
work_keys_str_mv | AT jassimaldoghachifarisabdulridha enhancementofdryreformingofmethaneforsyngasproductionovermmg1xmxocatalystsmnipdandptmce3ce4andni2 |