Variable selection via SCAD-penalized quantile regression for high-dimensional count data
This article introduces a quantile penalized regression technique for variable selection and estimation of conditional quantiles of counts in sparse high-dimensional models. The direct estimation and variable selection of the quantile regression is not feasible due to the discreteness of the count d...
Glavni autori: | Muhammad Khan, Dost, Yaqoob, Anum, Iqbal, Nadeem, Abdul Wahid, Khalil, Umair, Khan, Mukhtaj, Abd Rahman, Mohd Amiruddin, Mustafa, Mohd Shafie, Khan, Zardad |
---|---|
Format: | Članak |
Jezik: | English |
Izdano: |
Institute of Electrical and Electronics Engineers
2019
|
Online pristup: | http://psasir.upm.edu.my/id/eprint/82711/1/Variable%20selection%20.pdf |
Slični predmeti
-
A note on the consistency of Schwarz’s criterion in linear quantile regression with the SCAD penalty
od: Lian, Heng
Izdano: (2013) -
Penalized quantile regression for ΔCoVaR
od: Zhu, Jianfei
Izdano: (2019) -
Communication-Efficient Modeling with Penalized Quantile Regression for Distributed Data
od: Aijun Hu, i dr.
Izdano: (2021-01-01) -
Model-based quantile regression for count panel data
od: Zhang, Chuchu
Izdano: (2019) -
L1-Penalized Quantile Regression in High Dimensional Sparse Models
od: Chernozhukov, Victor, i dr.
Izdano: (2011)