Penalized LAD-SCAD estimator based on robust wrapped correlation screening method for high dimensional models
The widely used least absolute deviation (LAD) estimator with the smoothly clipped absolute deviation (SCAD) penalty function (abbreviated as LAD-SCAD) is known to produce corrupt estimates in the presence of outlying observations. The problem becomes more complicated when the number of predictors d...
Principais autores: | Baba, Ishaq Abdullahi, Midi, Habshah, Leong, Wah June, Ibragimov, Gafurjan I. |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
Universiti Putra Malaysia Press
2021
|
Acesso em linha: | http://psasir.upm.edu.my/id/eprint/90419/1/19%20JST-2149-2020.pdf |
Registros relacionados
-
A modified reweighted fast consistent and high-breakdown estimator for high-dimensional datasets
por: A. Baba, Ishaq, et al.
Publicado em: (2024) -
A new optimization scheme for robust design modeling with unbalanced data
por: Baba, Ishaq, et al.
Publicado em: (2021) -
An alternative approach of dual response surface optimization based on penalty function method
por: Baba, Ishaq, et al.
Publicado em: (2015) -
Variable selection via SCAD-penalized quantile regression for high-dimensional count data
por: Muhammad Khan, Dost, et al.
Publicado em: (2019) -
The L[subscript 1] penalized LAD estimator for high dimensional linear regression
por: Wang, Lie
Publicado em: (2015)