On Automatic Boundary Corrections Using Empirical Mode Decomposition

Penghuraian mod empirik (EMD) sangat berguna dalam menganalisis siri masa tak pegun dan tak linear. Namun EMD mengalami masalah batasan yang disebabkan oleh penggunaan EMD untuk isyarat yang terhingga. Akibatnya, kepincangan besar terjadi dipinggir dan pergerakan buatan berlaku ketika andaian batasa...

Full description

Bibliographic Details
Main Author: Mohamed Jaber, Abobaker
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://eprints.usm.my/31887/1/ABOBAKER_MOHAMED_JABER_24%28NN%29.pdf
_version_ 1825832614115672064
author Mohamed Jaber, Abobaker
author_facet Mohamed Jaber, Abobaker
author_sort Mohamed Jaber, Abobaker
collection USM
description Penghuraian mod empirik (EMD) sangat berguna dalam menganalisis siri masa tak pegun dan tak linear. Namun EMD mengalami masalah batasan yang disebabkan oleh penggunaan EMD untuk isyarat yang terhingga. Akibatnya, kepincangan besar terjadi dipinggir dan pergerakan buatan berlaku ketika andaian batasan klasik tidak terpenuhi. Kajian ini memperkenalkan dua kaedah baru dengan dua tahap untuk mengurangkan secara automatik kesan batasan yang hadir dalam EMD iaitu gabungan penghuraian mod empirik dengan regresi linear kuantil tempatan, EMD-LLQ dan gabungan peng-huraian mod empirik dengan dengan regresi linear tempatan, EMD-LL. Kejituan kae-dah ini ditunjukkan melalui kajian simulasi dan contoh sebenar dengan dibandingkan dengan kaedah imputasi lain yang sedia ada. Pada bahagian simulasi, pada tahap perta-ma, regresi linear kuantil tempatan (LLQ) dan regresi linear tempatan (LL) digunakan bertujuan untuk memberikan keperihalan yang cekap dari data yang tidak bagus dan hingar. Empirical mode decomposition (EMD) is particularly useful in analyzing nonstationary and nonlinear time series. Yet EMD struggle from boundary problems caused by the application of the EMD to a finite signal. Consequently, large bias at the edges and artificial wiggles happen when the classical boundary assumptions are not met. This study introduces two new two-stage methods to automatically decrease the boundary effects present in EMD namely Empirical Mode Decomposition combined with local linear quantile regression, EMD-LLQ and Empirical Mode Decomposition combined with local linear regression, EMD-LL. The accuracy of the method is shown by simulation studies and real example with comparison to other existing imputation methods. For simulation part: at the first stage, local linear quantile regression (LLQ) and local linear regression are applied to provide an efficient description of the corrupted and noisy data.
first_indexed 2024-03-06T14:55:28Z
format Thesis
id usm.eprints-31887
institution Universiti Sains Malaysia
language English
last_indexed 2024-03-06T14:55:28Z
publishDate 2016
record_format dspace
spelling usm.eprints-318872019-04-12T05:25:23Z http://eprints.usm.my/31887/ On Automatic Boundary Corrections Using Empirical Mode Decomposition Mohamed Jaber, Abobaker QA1 Mathematics (General) Penghuraian mod empirik (EMD) sangat berguna dalam menganalisis siri masa tak pegun dan tak linear. Namun EMD mengalami masalah batasan yang disebabkan oleh penggunaan EMD untuk isyarat yang terhingga. Akibatnya, kepincangan besar terjadi dipinggir dan pergerakan buatan berlaku ketika andaian batasan klasik tidak terpenuhi. Kajian ini memperkenalkan dua kaedah baru dengan dua tahap untuk mengurangkan secara automatik kesan batasan yang hadir dalam EMD iaitu gabungan penghuraian mod empirik dengan regresi linear kuantil tempatan, EMD-LLQ dan gabungan peng-huraian mod empirik dengan dengan regresi linear tempatan, EMD-LL. Kejituan kae-dah ini ditunjukkan melalui kajian simulasi dan contoh sebenar dengan dibandingkan dengan kaedah imputasi lain yang sedia ada. Pada bahagian simulasi, pada tahap perta-ma, regresi linear kuantil tempatan (LLQ) dan regresi linear tempatan (LL) digunakan bertujuan untuk memberikan keperihalan yang cekap dari data yang tidak bagus dan hingar. Empirical mode decomposition (EMD) is particularly useful in analyzing nonstationary and nonlinear time series. Yet EMD struggle from boundary problems caused by the application of the EMD to a finite signal. Consequently, large bias at the edges and artificial wiggles happen when the classical boundary assumptions are not met. This study introduces two new two-stage methods to automatically decrease the boundary effects present in EMD namely Empirical Mode Decomposition combined with local linear quantile regression, EMD-LLQ and Empirical Mode Decomposition combined with local linear regression, EMD-LL. The accuracy of the method is shown by simulation studies and real example with comparison to other existing imputation methods. For simulation part: at the first stage, local linear quantile regression (LLQ) and local linear regression are applied to provide an efficient description of the corrupted and noisy data. 2016-03 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/31887/1/ABOBAKER_MOHAMED_JABER_24%28NN%29.pdf Mohamed Jaber, Abobaker (2016) On Automatic Boundary Corrections Using Empirical Mode Decomposition. PhD thesis, Universiti Sains Malaysia.
spellingShingle QA1 Mathematics (General)
Mohamed Jaber, Abobaker
On Automatic Boundary Corrections Using Empirical Mode Decomposition
title On Automatic Boundary Corrections Using Empirical Mode Decomposition
title_full On Automatic Boundary Corrections Using Empirical Mode Decomposition
title_fullStr On Automatic Boundary Corrections Using Empirical Mode Decomposition
title_full_unstemmed On Automatic Boundary Corrections Using Empirical Mode Decomposition
title_short On Automatic Boundary Corrections Using Empirical Mode Decomposition
title_sort on automatic boundary corrections using empirical mode decomposition
topic QA1 Mathematics (General)
url http://eprints.usm.my/31887/1/ABOBAKER_MOHAMED_JABER_24%28NN%29.pdf
work_keys_str_mv AT mohamedjaberabobaker onautomaticboundarycorrectionsusingempiricalmodedecomposition