Design of a new hybrid artificial neural network method based on decision trees for calculating the Froude number in rigid rectangular channels

A vital topic regarding the optimum and economical design of rigid boundary open channels such as sewers and drainage systems is determining the movement of sediment particles. In this study, the incipient motion of sediment is estimated using three datasets from literature, including a wide range...

Full description

Bibliographic Details
Main Authors: Ebtehaj, Isa, Bonakdari, Hossein, Hossein Zaji, Amir, Hin, Charles Joo Bong, Ghani, Aminuddin Ab
Format: Article
Language:English
Published: De Gruyter Open 2016
Subjects:
Online Access:http://eprints.usm.my/36890/1/%28Design_of_a_new_hybrid_artificial%29.pdf
Description
Summary:A vital topic regarding the optimum and economical design of rigid boundary open channels such as sewers and drainage systems is determining the movement of sediment particles. In this study, the incipient motion of sediment is estimated using three datasets from literature, including a wide range of hydraulic parameters. Because existing equationsdo not consider the effect of sediment bed thickness on incipient motion estimation, this parameter is applied in this study along with the multilayer perceptron (MLP), a hybrid method based on decision trees (DT) (MLP-DT), to estimate incipient motion. According to a comparison with the observed experimental outcome, the proposed method performs well (MARE = 0.048, RMSE = 0.134, SI = 0.06, BIAS = –0.036). The performance of MLP and MLP-DT is compared with that of existing regression-based equations, and significantly higher performance over existing models is observed. Finally, an explicit expression for practical engineering is also provided.