Automatic Multi-Objective Clustering Algorithm Using Hybrid Particle Swarm Optimization With Simulated Annealing.
Pengelompokan adalah suatu teknik pelombongan data. Di dalam bidang set data tanpa selia, tugas mengelompok ialah dengan mengumpul set data kepada kelompok yang bermakna. Pengelompokan digunakan sebagai teknik penyelesaian di dalam pelbagai bidang dengan membahagikan dan mengstruktur semula data yan...
Main Author: | Abubaker, Ahmad Asad |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | http://eprints.usm.my/38568/1/Automatic_multi-objective_clustering_algorithm_using_hybrid_particle_swarm_optimization_with_simulated_annealing_by_Ahmad_Asad_Abubaker..pdf |
Similar Items
-
Review of Multi-Objective Swarm Intelligence Optimization Algorithms
by: Yasear, Shaymah Akram, et al.
Published: (2021) -
Multi-objective clustering algorithm using particle swarm optimization with crowding distance (MCPSO-CD)
by: Rashed, Alwatben Batoul, et al.
Published: (2020) -
Geostatistics and hybrid particle swarm-simulated annealing optimization in rain gauges network simulation
by: Mohd Khairul Bazli, Mohd Aziz, et al.
Published: (2019) -
Empirical Study of Segment Particle Swarm Optimization and Particle Swarm Optimization Algorithms
by: Azrag, M. A. K., et al.
Published: (2019) -
Dynamic multi-swarm particle swarm optimization for multi-objective optimization problems
by: Niu, B., et al.
Published: (2013)