Summary: | Manfaat positif teknik penggabungan data telah mempengaruhi beberapa aplikasi
kejuruteraan untuk melaksanakan teknologi tersebut. Walau bagaimanapun, terdapat
beberapa cabaran yang masih perlu diatasi seperti pemilihan algoritma yang
bersesuaian, kelewatan pemprosesan dan masalah jejalan memori. Tesis ini
mencadangkan satu model penggabungan data yang akan memudahkan proses
pemilihan algoritma selain mengoptimumkan jumlah pemilihan algoritma yang
berpotensi. Model ini menggabungkan teknologi penggabungan data dengan domain
kejuruteraan algoritma, dan dengan itu mengoptimumkan algoritma penggabungan
data menggunakan teknik yang canggih seperti pengaturcaraan berfungsi untuk
mengurangkan lengah pemprosesan dan penggunaan memori. Model ini
direalisasikan dalam empat aplikasi penggabungan data seperti sistem unit
pengukuran inersia (IMU), sistem OktoKopter, penggabungan data satelit dan
penilaian struktur konkrit. Bagi keseluruhan aplikasi pelbagai penggabungan data
algoritma seperti algoritma turas Kalman, algoritma faktor analisis (FA) dan
pengusulan algoritma QR-FA telah dibandingkan dalam jangkaan kesalahan asas.
Algoritma QR-FA yang dicadangkan telah dibangunkan dengan memperkenalkan
beberapa langkah tambahan algoritma penguraian QR ke dalam algoritma piawai
analisis faktor. Algoritma dengan paling kurang jangkaan kesalahan akan dipilih bagi
proses pengoptimuman. Hasil keputusan bagi semua aplikasi mengesahkan bahawa
pengoptimuman telah mengurangkan masa pelaksanaan dan penggunaan memori
bagi penggabungan data algoritma.
________________________________________________________________________________________________________________________
The positive virtues of data fusion technique have influenced several engineering
applications to implement the technology. However, a number of challenges remain
to be addressed, such as selection of appropriate algorithm, processing delay and
bottleneck-memory problem. This thesis proposes a data fusion model that facilitates
selection of algorithm and recommends selected algorithm to be optimized. The
model collaborates data fusion technology with algorithm engineering domain,
accordingly data fusion algorithm is optimized using sophisticated technique such as
functional programming to reduce the processing delay and memory usage. The
model is realized in four data fusion applications such as inertial measurement unit
(IMU) system, OktoKopter system, satellite data fusion and concrete structure
evaluation. In all the applications, various data fusion algorithms such as Kalman
filter algorithm, factor analysis (FA) algorithm and the proposed QR-FA algorithm
are compared on basis of estimation error. The proposed QR-FA algorithm is
developed by introducing additional step of QR decomposition in the standard factor
analysis algorithm. The algorithm with the least estimation error is selected for
optimization. The results in all the applications confirm that optimization has
significantly reduced execution time and memory usage of selected data fusion
algorithm.
|