Harmony search-based fuzzy clustering algorithms for image segmentation.

Algoritma-algoritma pengkelompokan kabur, yang tergolong di dalam kategori pembelajaran mesin tanpa selia, adalah di antara kaedah segmentasi imej yang paling berjaya. Namun demikian, terdapat dua isu utama yang membataskan keberkesanan kaedah ini: kepekaan terhadap pemilihan pusat kelompok permulaa...

Full description

Bibliographic Details
Main Author: Alia, Osama Moh’d Radi
Format: Thesis
Language:English
Published: 2011
Subjects:
Online Access:http://eprints.usm.my/42978/1/Pages_from_HARMONY_SEARCH-BASED_FUZZY.pdf
_version_ 1825834719595462656
author Alia, Osama Moh’d Radi
author_facet Alia, Osama Moh’d Radi
author_sort Alia, Osama Moh’d Radi
collection USM
description Algoritma-algoritma pengkelompokan kabur, yang tergolong di dalam kategori pembelajaran mesin tanpa selia, adalah di antara kaedah segmentasi imej yang paling berjaya. Namun demikian, terdapat dua isu utama yang membataskan keberkesanan kaedah ini: kepekaan terhadap pemilihan pusat kelompok permulaan dan ketidakpastian terhadap bilangan kelompok sebenar di dalam set data. Fuzzy clustering algorithms, which fall under unsupervised machine learning, are among the most successful methods for image segmentation. However, two main issues plague these clustering algorithms: initialization sensitivity of cluster centers and unknown number of actual clusters in the given dataset.
first_indexed 2024-03-06T15:26:55Z
format Thesis
id usm.eprints-42978
institution Universiti Sains Malaysia
language English
last_indexed 2024-03-06T15:26:55Z
publishDate 2011
record_format dspace
spelling usm.eprints-429782018-11-22T04:56:44Z http://eprints.usm.my/42978/ Harmony search-based fuzzy clustering algorithms for image segmentation. Alia, Osama Moh’d Radi QA75.5-76.95 Electronic computers. Computer science Algoritma-algoritma pengkelompokan kabur, yang tergolong di dalam kategori pembelajaran mesin tanpa selia, adalah di antara kaedah segmentasi imej yang paling berjaya. Namun demikian, terdapat dua isu utama yang membataskan keberkesanan kaedah ini: kepekaan terhadap pemilihan pusat kelompok permulaan dan ketidakpastian terhadap bilangan kelompok sebenar di dalam set data. Fuzzy clustering algorithms, which fall under unsupervised machine learning, are among the most successful methods for image segmentation. However, two main issues plague these clustering algorithms: initialization sensitivity of cluster centers and unknown number of actual clusters in the given dataset. 2011-02 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/42978/1/Pages_from_HARMONY_SEARCH-BASED_FUZZY.pdf Alia, Osama Moh’d Radi (2011) Harmony search-based fuzzy clustering algorithms for image segmentation. PhD thesis, Universiti Sains Malaysia.
spellingShingle QA75.5-76.95 Electronic computers. Computer science
Alia, Osama Moh’d Radi
Harmony search-based fuzzy clustering algorithms for image segmentation.
title Harmony search-based fuzzy clustering algorithms for image segmentation.
title_full Harmony search-based fuzzy clustering algorithms for image segmentation.
title_fullStr Harmony search-based fuzzy clustering algorithms for image segmentation.
title_full_unstemmed Harmony search-based fuzzy clustering algorithms for image segmentation.
title_short Harmony search-based fuzzy clustering algorithms for image segmentation.
title_sort harmony search based fuzzy clustering algorithms for image segmentation
topic QA75.5-76.95 Electronic computers. Computer science
url http://eprints.usm.my/42978/1/Pages_from_HARMONY_SEARCH-BASED_FUZZY.pdf
work_keys_str_mv AT aliaosamamohdradi harmonysearchbasedfuzzyclusteringalgorithmsforimagesegmentation