Penambahbaikan Proses Pengekstrakan Ciri Dan Pengklasifikasian Sel Kanser Pangkal Rahim Untuk Sistem NeuralPap

Kanser pangkal rahim telah menyebabkan banyak kes kematian setiap tahun. Ujian saringan seperti ujian palitan Pap bagi pengesanan peringkat prakanser pangkal rahim mampu mengelak berlakunya kes kanser. Walau bagaimanapun, ujian palitan Pap mempunyai beberapa kelemahan seperti penyediaan slaid yang k...

Full description

Bibliographic Details
Main Author: Sulaiman, Siti Noraini
Format: Thesis
Language:English
Published: 2012
Subjects:
Online Access:http://eprints.usm.my/45666/1/SITI%20NORAINI%20SULAIMAN_HJ.pdf
_version_ 1797011420532965376
author Sulaiman, Siti Noraini
author_facet Sulaiman, Siti Noraini
author_sort Sulaiman, Siti Noraini
collection USM
description Kanser pangkal rahim telah menyebabkan banyak kes kematian setiap tahun. Ujian saringan seperti ujian palitan Pap bagi pengesanan peringkat prakanser pangkal rahim mampu mengelak berlakunya kes kanser. Walau bagaimanapun, ujian palitan Pap mempunyai beberapa kelemahan seperti penyediaan slaid yang kurang efektif dan kesilapan manusia. Oleh itu, sistem diagnosis berbantu-komputer diperkenalkan sebagai penyelesaian kepada permasalahan tersebut. Salah satu sistem diagnosis yang telah dibina ialah NeuralPap. Walau bagaimanapun, prestasi NeuralPap dibatasi oleh beberapa kekangan. Penyelidikan ini mencadangkan beberapa algoritma pemprosesan imej baru bagi mengurangkan kekangan-kekangan tersebut. Algoritma pengelompokan Purata-k-Keahlian Fuzi (FMKM) dicadangkan sebagai pengganti algoritma pengelompokan Purata-k Boleh Gerak (MKM) bagi meruas imej palitan Pap kepada kawasan nukleus, sitoplasma dan latar belakang. Algoritma Pensuisan Kelompok (SC) dan Algoritma Pengelompokan Berasaskan Nyah-hingar (DB) pula dicadangkan bagi meruas sel pangkal rahim yang dicemari hingar. Seterusnya, algoritma pengekstrakan ciri berasaskan perwarnaan pseudo yang dinamakan Pengekstrakan Ciri Pewarnaan Pseudo (PCFE) manual dan PCFE Separa-Automatik direkabentuk bagi menggantikan Pengekstrakan Ciri Secara Pertumbuhan Kawasan (RGBFE) yang menggunakan imej monokrom. Penyelidikan ini telah melangkah setapak ke hadapan berbanding sistem NeuralPap dengan mencadangkan algoritma pengekstrakan ciri bagi sel-sel bertindih iaitu dengan menggabungkan konsep pewarnaan ruang dengan algoritma PCFE Separa-Automatik. Selain itu, penyelidikan ini juga telah mencadangkan penggunaan algoritma FMKM dalam proses penetapan pusat rangkaian Fungsi Asas Jejarian (RBF) dan RBF Hibrid (HRBF) bagi menggantikan algoritma MKM yang digunakan sebelum ini. Semua algoritma yang dicadangkan telah terbukti menghasilkan prestasi yang lebih baik berbanding algoritma sepadan yang digunakan dalam sistem NeuralPap. Selain itu, penggabungan semua algoritma tersebut berjaya meningkatkan kejituan pengklasifikasian kanser pangkal rahim oleh sistem NeuralPap iaitu dengan peratusan 76.35% berbanding 73.40% yang diperolehi dari sistem NeuralPap sebelumnya, setelah diuji dengan 799 sel pangkal rahim.
first_indexed 2024-03-06T15:34:06Z
format Thesis
id usm.eprints-45666
institution Universiti Sains Malaysia
language English
last_indexed 2024-03-06T15:34:06Z
publishDate 2012
record_format dspace
spelling usm.eprints-456662019-10-16T01:05:41Z http://eprints.usm.my/45666/ Penambahbaikan Proses Pengekstrakan Ciri Dan Pengklasifikasian Sel Kanser Pangkal Rahim Untuk Sistem NeuralPap Sulaiman, Siti Noraini TK1-9971 Electrical engineering. Electronics. Nuclear engineering Kanser pangkal rahim telah menyebabkan banyak kes kematian setiap tahun. Ujian saringan seperti ujian palitan Pap bagi pengesanan peringkat prakanser pangkal rahim mampu mengelak berlakunya kes kanser. Walau bagaimanapun, ujian palitan Pap mempunyai beberapa kelemahan seperti penyediaan slaid yang kurang efektif dan kesilapan manusia. Oleh itu, sistem diagnosis berbantu-komputer diperkenalkan sebagai penyelesaian kepada permasalahan tersebut. Salah satu sistem diagnosis yang telah dibina ialah NeuralPap. Walau bagaimanapun, prestasi NeuralPap dibatasi oleh beberapa kekangan. Penyelidikan ini mencadangkan beberapa algoritma pemprosesan imej baru bagi mengurangkan kekangan-kekangan tersebut. Algoritma pengelompokan Purata-k-Keahlian Fuzi (FMKM) dicadangkan sebagai pengganti algoritma pengelompokan Purata-k Boleh Gerak (MKM) bagi meruas imej palitan Pap kepada kawasan nukleus, sitoplasma dan latar belakang. Algoritma Pensuisan Kelompok (SC) dan Algoritma Pengelompokan Berasaskan Nyah-hingar (DB) pula dicadangkan bagi meruas sel pangkal rahim yang dicemari hingar. Seterusnya, algoritma pengekstrakan ciri berasaskan perwarnaan pseudo yang dinamakan Pengekstrakan Ciri Pewarnaan Pseudo (PCFE) manual dan PCFE Separa-Automatik direkabentuk bagi menggantikan Pengekstrakan Ciri Secara Pertumbuhan Kawasan (RGBFE) yang menggunakan imej monokrom. Penyelidikan ini telah melangkah setapak ke hadapan berbanding sistem NeuralPap dengan mencadangkan algoritma pengekstrakan ciri bagi sel-sel bertindih iaitu dengan menggabungkan konsep pewarnaan ruang dengan algoritma PCFE Separa-Automatik. Selain itu, penyelidikan ini juga telah mencadangkan penggunaan algoritma FMKM dalam proses penetapan pusat rangkaian Fungsi Asas Jejarian (RBF) dan RBF Hibrid (HRBF) bagi menggantikan algoritma MKM yang digunakan sebelum ini. Semua algoritma yang dicadangkan telah terbukti menghasilkan prestasi yang lebih baik berbanding algoritma sepadan yang digunakan dalam sistem NeuralPap. Selain itu, penggabungan semua algoritma tersebut berjaya meningkatkan kejituan pengklasifikasian kanser pangkal rahim oleh sistem NeuralPap iaitu dengan peratusan 76.35% berbanding 73.40% yang diperolehi dari sistem NeuralPap sebelumnya, setelah diuji dengan 799 sel pangkal rahim. 2012-02 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/45666/1/SITI%20NORAINI%20SULAIMAN_HJ.pdf Sulaiman, Siti Noraini (2012) Penambahbaikan Proses Pengekstrakan Ciri Dan Pengklasifikasian Sel Kanser Pangkal Rahim Untuk Sistem NeuralPap. PhD thesis, Universiti Sains Malaysia.
spellingShingle TK1-9971 Electrical engineering. Electronics. Nuclear engineering
Sulaiman, Siti Noraini
Penambahbaikan Proses Pengekstrakan Ciri Dan Pengklasifikasian Sel Kanser Pangkal Rahim Untuk Sistem NeuralPap
title Penambahbaikan Proses Pengekstrakan Ciri Dan Pengklasifikasian Sel Kanser Pangkal Rahim Untuk Sistem NeuralPap
title_full Penambahbaikan Proses Pengekstrakan Ciri Dan Pengklasifikasian Sel Kanser Pangkal Rahim Untuk Sistem NeuralPap
title_fullStr Penambahbaikan Proses Pengekstrakan Ciri Dan Pengklasifikasian Sel Kanser Pangkal Rahim Untuk Sistem NeuralPap
title_full_unstemmed Penambahbaikan Proses Pengekstrakan Ciri Dan Pengklasifikasian Sel Kanser Pangkal Rahim Untuk Sistem NeuralPap
title_short Penambahbaikan Proses Pengekstrakan Ciri Dan Pengklasifikasian Sel Kanser Pangkal Rahim Untuk Sistem NeuralPap
title_sort penambahbaikan proses pengekstrakan ciri dan pengklasifikasian sel kanser pangkal rahim untuk sistem neuralpap
topic TK1-9971 Electrical engineering. Electronics. Nuclear engineering
url http://eprints.usm.my/45666/1/SITI%20NORAINI%20SULAIMAN_HJ.pdf
work_keys_str_mv AT sulaimansitinoraini penambahbaikanprosespengekstrakanciridanpengklasifikasianselkanserpangkalrahimuntuksistemneuralpap