Intelligent Thermal Condition Monitoring Of Electrical Equipment Using Infrared Thermography

Infrared thermographic inspection system is widely being utilized for defect detection in electrical equipment. Conventional inspection based on the temperature data interpretation and evaluation the condition of the equipment is subjective and depends on the human experts. Implementation of an auto...

Full description

Bibliographic Details
Main Author: Huda, A. S. Nazmul
Format: Thesis
Language:English
Published: 2013
Subjects:
Online Access:http://eprints.usm.my/46367/1/A.%20S.%20Nazmul%20Huda24.pdf
_version_ 1825905547542528000
author Huda, A. S. Nazmul
author_facet Huda, A. S. Nazmul
author_sort Huda, A. S. Nazmul
collection USM
description Infrared thermographic inspection system is widely being utilized for defect detection in electrical equipment. Conventional inspection based on the temperature data interpretation and evaluation the condition of the equipment is subjective and depends on the human experts. Implementation of an automatic diagnostic system based on artificial neural network reduces operating time, human efforts and also increases the reliability of system. In this thesis, an automatic features extraction system from thermal image of defects and the intelligent classification of thermal condition based on neural network are proposed. The proposed system extracts first order histogram based features and grey level co-occurrence matrix features from the segmented regions and evaluates the effectiveness of these features for defect characterization. Three feature selection techniques namely principal component analysis, the discriminant analysis and individual feature performance analysis are employed to find out the useful and important statistical features. In this study, multilayered perceptron network is proposed for classifying thermal condition into two classes namely normal and defective. The multilayered perceptron neural networks are trained using various training algorithms. Additionally, the present research introduces a computer aided defect diagnosis system where the defected region is found by manual thresholding and intensity features are extracted from each segmented region. The results prove that the statistical features are capable to classify thermal condition and the neural networks achieve the accuracy around 73~78%
first_indexed 2024-03-06T15:36:06Z
format Thesis
id usm.eprints-46367
institution Universiti Sains Malaysia
language English
last_indexed 2024-03-06T15:36:06Z
publishDate 2013
record_format dspace
spelling usm.eprints-463672020-02-27T08:07:50Z http://eprints.usm.my/46367/ Intelligent Thermal Condition Monitoring Of Electrical Equipment Using Infrared Thermography Huda, A. S. Nazmul TK1-9971 Electrical engineering. Electronics. Nuclear engineering Infrared thermographic inspection system is widely being utilized for defect detection in electrical equipment. Conventional inspection based on the temperature data interpretation and evaluation the condition of the equipment is subjective and depends on the human experts. Implementation of an automatic diagnostic system based on artificial neural network reduces operating time, human efforts and also increases the reliability of system. In this thesis, an automatic features extraction system from thermal image of defects and the intelligent classification of thermal condition based on neural network are proposed. The proposed system extracts first order histogram based features and grey level co-occurrence matrix features from the segmented regions and evaluates the effectiveness of these features for defect characterization. Three feature selection techniques namely principal component analysis, the discriminant analysis and individual feature performance analysis are employed to find out the useful and important statistical features. In this study, multilayered perceptron network is proposed for classifying thermal condition into two classes namely normal and defective. The multilayered perceptron neural networks are trained using various training algorithms. Additionally, the present research introduces a computer aided defect diagnosis system where the defected region is found by manual thresholding and intensity features are extracted from each segmented region. The results prove that the statistical features are capable to classify thermal condition and the neural networks achieve the accuracy around 73~78% 2013-12 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/46367/1/A.%20S.%20Nazmul%20Huda24.pdf Huda, A. S. Nazmul (2013) Intelligent Thermal Condition Monitoring Of Electrical Equipment Using Infrared Thermography. Masters thesis, Universiti Sains Malaysia.
spellingShingle TK1-9971 Electrical engineering. Electronics. Nuclear engineering
Huda, A. S. Nazmul
Intelligent Thermal Condition Monitoring Of Electrical Equipment Using Infrared Thermography
title Intelligent Thermal Condition Monitoring Of Electrical Equipment Using Infrared Thermography
title_full Intelligent Thermal Condition Monitoring Of Electrical Equipment Using Infrared Thermography
title_fullStr Intelligent Thermal Condition Monitoring Of Electrical Equipment Using Infrared Thermography
title_full_unstemmed Intelligent Thermal Condition Monitoring Of Electrical Equipment Using Infrared Thermography
title_short Intelligent Thermal Condition Monitoring Of Electrical Equipment Using Infrared Thermography
title_sort intelligent thermal condition monitoring of electrical equipment using infrared thermography
topic TK1-9971 Electrical engineering. Electronics. Nuclear engineering
url http://eprints.usm.my/46367/1/A.%20S.%20Nazmul%20Huda24.pdf
work_keys_str_mv AT hudaasnazmul intelligentthermalconditionmonitoringofelectricalequipmentusinginfraredthermography