Characterization Of Various Types Of Nanofillers Filled Crosslinked Polyethylene Composites For Cable Application

This research is to study the effect of nanofillers on mechanical, physical, dielectric and thermal properties of the crosslinked polyethylene (XLPE) matrix. Untreated nanofillers used are zinc oxide (ZnO) and aluminium oxide (Al2O3). Treated nanofillers used are organoclay (OMMT), 3-aminopropylt...

Full description

Bibliographic Details
Main Author: Lim, Kai Sheng
Format: Thesis
Language:English
Published: 2018
Subjects:
Online Access:http://eprints.usm.my/46666/1/Characterization%20Of%20Various%20Types%20Of%20Nanofillers%20Filled%20Crosslinked%20Polyethylene%20Composites%20For%20Cable%20Application.pdf
_version_ 1797011616052543488
author Lim, Kai Sheng
author_facet Lim, Kai Sheng
author_sort Lim, Kai Sheng
collection USM
description This research is to study the effect of nanofillers on mechanical, physical, dielectric and thermal properties of the crosslinked polyethylene (XLPE) matrix. Untreated nanofillers used are zinc oxide (ZnO) and aluminium oxide (Al2O3). Treated nanofillers used are organoclay (OMMT), 3-aminopropyltriethoxysilane treated ZnO (KH550-ZnO), triethoxycaprylylsilane treated ZnO (TCS-ZnO) and aluminic ester treated Al2O3 (AE-Al2O3). XLPE nanocomposites were prepared by melt mixing with a single screw extruder followed by hot press moulding. Different weight percentages (0.5, 1, 1.5 and 2 wt%) were compounded in untreated and treated nanocomposites. Combinations of ZnO/Al2O3 and ZnO/OMMT with different ratios (75/25, 50/50 and 25/75) in total of 1 wt% filler loading were compounded in hybrid nanocomposites. Nanocomposites were tested as per ASTM standard methods and characterized with scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results showed that the addition of untreated and treated nanofillers improved tensile property, burning rate, dielectric property and decomposition temperature. However, it has limited effect on the water resistance property, melting and crystallization temperatures. The optimal filler loading was 1.5 wt% and the effect of Al2O3 is better than ZnO and OMMT nanofillers based on most properties. Surface treatment with coupling agent enhanced the interface between the filler and the matrix with chemical bonding. Strong filler-matrix interaction further improved the properties of composite. The optimal filler loading was 1.5 wt% and the effect of AE-Al2O3 is better than KH550- ZnO and TCS-ZnO nanofillers based on most properties. In hybrid nanocomposites, the best filler ratio was 50/50 in ZnO/Al2O3 and 75/25 in ZnO/OMMT combinations which induced synergistic properties. Overall, AE-Al2O3(1.5)/XLPE nanocomposite has the best results. As compared with the unfilled XLPE, it has led to the significant improvement in tensile strength (59%), elongation at break (51%), Young’s modulus (60%), contact angle (4%), dielectric breakdown strength (35%), volume resistivity (55%), decomposition temperature and reduced burning rate (14%). It is suitable for cable insulation application due to its extraordinary mechanical, physical, dielectric and thermal properties.
first_indexed 2024-03-06T15:36:55Z
format Thesis
id usm.eprints-46666
institution Universiti Sains Malaysia
language English
last_indexed 2024-03-06T15:36:55Z
publishDate 2018
record_format dspace
spelling usm.eprints-466662021-11-17T03:42:13Z http://eprints.usm.my/46666/ Characterization Of Various Types Of Nanofillers Filled Crosslinked Polyethylene Composites For Cable Application Lim, Kai Sheng T Technology TA401-492 Materials of engineering and construction. Mechanics of materials This research is to study the effect of nanofillers on mechanical, physical, dielectric and thermal properties of the crosslinked polyethylene (XLPE) matrix. Untreated nanofillers used are zinc oxide (ZnO) and aluminium oxide (Al2O3). Treated nanofillers used are organoclay (OMMT), 3-aminopropyltriethoxysilane treated ZnO (KH550-ZnO), triethoxycaprylylsilane treated ZnO (TCS-ZnO) and aluminic ester treated Al2O3 (AE-Al2O3). XLPE nanocomposites were prepared by melt mixing with a single screw extruder followed by hot press moulding. Different weight percentages (0.5, 1, 1.5 and 2 wt%) were compounded in untreated and treated nanocomposites. Combinations of ZnO/Al2O3 and ZnO/OMMT with different ratios (75/25, 50/50 and 25/75) in total of 1 wt% filler loading were compounded in hybrid nanocomposites. Nanocomposites were tested as per ASTM standard methods and characterized with scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results showed that the addition of untreated and treated nanofillers improved tensile property, burning rate, dielectric property and decomposition temperature. However, it has limited effect on the water resistance property, melting and crystallization temperatures. The optimal filler loading was 1.5 wt% and the effect of Al2O3 is better than ZnO and OMMT nanofillers based on most properties. Surface treatment with coupling agent enhanced the interface between the filler and the matrix with chemical bonding. Strong filler-matrix interaction further improved the properties of composite. The optimal filler loading was 1.5 wt% and the effect of AE-Al2O3 is better than KH550- ZnO and TCS-ZnO nanofillers based on most properties. In hybrid nanocomposites, the best filler ratio was 50/50 in ZnO/Al2O3 and 75/25 in ZnO/OMMT combinations which induced synergistic properties. Overall, AE-Al2O3(1.5)/XLPE nanocomposite has the best results. As compared with the unfilled XLPE, it has led to the significant improvement in tensile strength (59%), elongation at break (51%), Young’s modulus (60%), contact angle (4%), dielectric breakdown strength (35%), volume resistivity (55%), decomposition temperature and reduced burning rate (14%). It is suitable for cable insulation application due to its extraordinary mechanical, physical, dielectric and thermal properties. 2018-04-01 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/46666/1/Characterization%20Of%20Various%20Types%20Of%20Nanofillers%20Filled%20Crosslinked%20Polyethylene%20Composites%20For%20Cable%20Application.pdf Lim, Kai Sheng (2018) Characterization Of Various Types Of Nanofillers Filled Crosslinked Polyethylene Composites For Cable Application. Masters thesis, Universiti Sains Malaysia.
spellingShingle T Technology
TA401-492 Materials of engineering and construction. Mechanics of materials
Lim, Kai Sheng
Characterization Of Various Types Of Nanofillers Filled Crosslinked Polyethylene Composites For Cable Application
title Characterization Of Various Types Of Nanofillers Filled Crosslinked Polyethylene Composites For Cable Application
title_full Characterization Of Various Types Of Nanofillers Filled Crosslinked Polyethylene Composites For Cable Application
title_fullStr Characterization Of Various Types Of Nanofillers Filled Crosslinked Polyethylene Composites For Cable Application
title_full_unstemmed Characterization Of Various Types Of Nanofillers Filled Crosslinked Polyethylene Composites For Cable Application
title_short Characterization Of Various Types Of Nanofillers Filled Crosslinked Polyethylene Composites For Cable Application
title_sort characterization of various types of nanofillers filled crosslinked polyethylene composites for cable application
topic T Technology
TA401-492 Materials of engineering and construction. Mechanics of materials
url http://eprints.usm.my/46666/1/Characterization%20Of%20Various%20Types%20Of%20Nanofillers%20Filled%20Crosslinked%20Polyethylene%20Composites%20For%20Cable%20Application.pdf
work_keys_str_mv AT limkaisheng characterizationofvarioustypesofnanofillersfilledcrosslinkedpolyethylenecompositesforcableapplication