2D Swarm Meerkats Behavior Modelling
Animal behavior is the connection or link between the molecular and physiological aspects of biology and the ecological. Behavior is the bridge between organisms and environment also between the nervous system and the ecosystem. Besides that, behavior is generally the animal's "first lin...
Main Author: | |
---|---|
Format: | Monograph |
Language: | English |
Published: |
Universiti Sains Malaysia
2018
|
Subjects: | |
Online Access: | http://eprints.usm.my/53303/1/2D%20Swarm%20Meerkats%20Behavior%20Modelling_Ng%20Hong%20Shen_E3_2018.pdf |
_version_ | 1825906854944833536 |
---|---|
author | Ng, Hong Shen |
author_facet | Ng, Hong Shen |
author_sort | Ng, Hong Shen |
collection | USM |
description | Animal behavior is the connection or link between the molecular and physiological aspects of biology and the ecological. Behavior is the bridge between organisms and
environment also between the nervous system and the ecosystem. Besides that, behavior is generally the animal's "first line of defense" in response to environmental change. Therefore, careful observation of the behavior can provide us a great information. Behavior is one of the most important features of animal life. As a human, behavior plays a critical role in our lives. This is because behavior is the part of an organism that interacts with its environment. Many problems occur in human society are often related to the interaction between environment or genetics with behavior. The fields of socioecology and animal behavior deal with the issue of environment behavioral interactions at an accurate level and a proximate level. Therefore, social scientists are turning to animal behavior as a framework to interpret human society and to find out possible sources of societal problems. In this study, the foraging behavior of Meerkat will be studied. In this thesis, the foraging behavior of Meerkat will be studied and
the parameters for simulation of Meerkats foraging behavior are designed. The designed parameters including the number of agents, number of group, range of perception and number
of food. However, there are not much works done on Meerkats therefore, survey form is used in designing these 14 sets of parameters. Only the choices that have higher percentage is
focused in designing the 14 sets of parameters for simulation. The performance of each 14 sets of simulation are compared based on the result obtained from the simulations such as the highest mean quality the simulation can achieve and the number of ticks required to reach
the highest mean quality. The higher the mean quality the better the performance. The smaller the number of ticks required to reach the highest mean quality the better the performance. |
first_indexed | 2024-03-06T15:55:45Z |
format | Monograph |
id | usm.eprints-53303 |
institution | Universiti Sains Malaysia |
language | English |
last_indexed | 2024-03-06T15:55:45Z |
publishDate | 2018 |
publisher | Universiti Sains Malaysia |
record_format | dspace |
spelling | usm.eprints-533032022-07-06T07:19:43Z http://eprints.usm.my/53303/ 2D Swarm Meerkats Behavior Modelling Ng, Hong Shen T Technology TK Electrical Engineering. Electronics. Nuclear Engineering Animal behavior is the connection or link between the molecular and physiological aspects of biology and the ecological. Behavior is the bridge between organisms and environment also between the nervous system and the ecosystem. Besides that, behavior is generally the animal's "first line of defense" in response to environmental change. Therefore, careful observation of the behavior can provide us a great information. Behavior is one of the most important features of animal life. As a human, behavior plays a critical role in our lives. This is because behavior is the part of an organism that interacts with its environment. Many problems occur in human society are often related to the interaction between environment or genetics with behavior. The fields of socioecology and animal behavior deal with the issue of environment behavioral interactions at an accurate level and a proximate level. Therefore, social scientists are turning to animal behavior as a framework to interpret human society and to find out possible sources of societal problems. In this study, the foraging behavior of Meerkat will be studied. In this thesis, the foraging behavior of Meerkat will be studied and the parameters for simulation of Meerkats foraging behavior are designed. The designed parameters including the number of agents, number of group, range of perception and number of food. However, there are not much works done on Meerkats therefore, survey form is used in designing these 14 sets of parameters. Only the choices that have higher percentage is focused in designing the 14 sets of parameters for simulation. The performance of each 14 sets of simulation are compared based on the result obtained from the simulations such as the highest mean quality the simulation can achieve and the number of ticks required to reach the highest mean quality. The higher the mean quality the better the performance. The smaller the number of ticks required to reach the highest mean quality the better the performance. Universiti Sains Malaysia 2018-06-01 Monograph NonPeerReviewed application/pdf en http://eprints.usm.my/53303/1/2D%20Swarm%20Meerkats%20Behavior%20Modelling_Ng%20Hong%20Shen_E3_2018.pdf Ng, Hong Shen (2018) 2D Swarm Meerkats Behavior Modelling. Project Report. Universiti Sains Malaysia, Pusat Pengajian Kejuruteraan Elektrik dan Elektronik. (Submitted) |
spellingShingle | T Technology TK Electrical Engineering. Electronics. Nuclear Engineering Ng, Hong Shen 2D Swarm Meerkats Behavior Modelling |
title | 2D Swarm Meerkats Behavior Modelling |
title_full | 2D Swarm Meerkats Behavior Modelling |
title_fullStr | 2D Swarm Meerkats Behavior Modelling |
title_full_unstemmed | 2D Swarm Meerkats Behavior Modelling |
title_short | 2D Swarm Meerkats Behavior Modelling |
title_sort | 2d swarm meerkats behavior modelling |
topic | T Technology TK Electrical Engineering. Electronics. Nuclear Engineering |
url | http://eprints.usm.my/53303/1/2D%20Swarm%20Meerkats%20Behavior%20Modelling_Ng%20Hong%20Shen_E3_2018.pdf |
work_keys_str_mv | AT nghongshen 2dswarmmeerkatsbehaviormodelling |