B-Splines Based Finite Difference Schemes For Fractional Partial Differential Equations
Fractional partial differential equations (FPDEs) are considered to be the extended formulation of classical partial differential equations (PDEs). Several physical models in certain fields of sciences and engineering are more appropriately formulated in the form of FPDEs. FPDEs in general, do not...
Main Author: | Akram, Tayyaba |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | http://eprints.usm.my/55571/1/Pages%20from%20FULL%20THESIS%20by%20TAYYABA%20AKRAM%20cut.pdf |
Similar Items
-
Bicubic B-Spline And Thin Plate Spline On Surface Appoximation
by: Liew, Khang Jie
Published: (2017) -
Crank-Nicolson finite difference method for two-dimensional
fractional sub-diffusion equation
by: Ali, Umair, et al.
Published: (2017) -
Implementation of the ksor method for solving one-dimensional time-fractional parabolic partial differential equations with the caputo finite difference scheme title of manuscript
by: Mohd Usran Alibubin, et al.
Published: (2025) -
Application of Hybrid Cubic B-Spline Collocation Approach for Solving a Generalized Nonlinear Klien-Gordon Equation
by: Zin, Shazalina Mat, et al.
Published: (2014) -
Refinement of SOR method for the rational finite difference solution of first-order fredholm integro-differential equations
by: Xu, M.-M, et al.
Published: (2021)