Wideband Dielectric Feeder For K-Band Parabolic Antenna

Parabolic antennas are one of vital devices for long distance communication such as radio relay links and satellite links due to their high gain, high directivity and high power handling feature. In addition, hat feeder is widely used as a feeder for parabolic antennas due to low cross-polarization...

Full description

Bibliographic Details
Main Author: Ahmad Zubir, Ihsan
Format: Thesis
Language:English
Published: 2018
Subjects:
Online Access:http://eprints.usm.my/56060/1/Wideband%20Dielectric%20Feeder%20For%20K-Band%20Parabolic%20Antenna_Ihsan%20Ahmad%20Zubir.pdf
_version_ 1797013562895368192
author Ahmad Zubir, Ihsan
author_facet Ahmad Zubir, Ihsan
author_sort Ahmad Zubir, Ihsan
collection USM
description Parabolic antennas are one of vital devices for long distance communication such as radio relay links and satellite links due to their high gain, high directivity and high power handling feature. In addition, hat feeder is widely used as a feeder for parabolic antennas due to low cross-polarization level, low sidelobes and low reflection coefficient. However, hat feeder has narrow bandwidth up to 30% which cannot be used in wideband application. This thesis describes the development and analysis of wideband feeder of parabolic antenna using dielectric resonator (DR) feeder. There are two designs of wideband dielectric resonator antenna (DRA) using stacked structure with two different shapes which are cylindrical and half cylindrical DRs are proposed in this work. The cylindrical DRs used RO4003C, FR4 and RO6010, while the half cylindrical DRs used alumina (Al2O3), silica (SiO2) and magnesium zirconate (MgZrO3). The stacked perforated DRA (SPDRA) achieved bandwidth of 75.8 % with the average gain of 5.65 dBi using perforated techniques, whereas the stacked half cylindrical DRA (SHCDRA) has bandwidth of 61.01% with the average gain range 4.885 dBi, with each of the half cylindrical are rotated by angle of 30'brelative to its neighboring layer. The bandwidth measurement results for SPDRA and SHCDRA designs show a reasonable agreement with different of 2.7% and 0.48%, respectively in comparison with simulation. Both of the proposed DRAs were mounted on the parabolic reflector and the average gain and 3 dB beamwidth are achieved 27.75 dBi, 27.08 dBi and 4.5' to 5.8 and 4.9' to 6.3' respectively. A parametric analysis is carried out to analyze and verify the characteristics of the proposed antennas by using Computer Simulation Technology (CST) software.
first_indexed 2024-03-06T16:03:58Z
format Thesis
id usm.eprints-56060
institution Universiti Sains Malaysia
language English
last_indexed 2024-03-06T16:03:58Z
publishDate 2018
record_format dspace
spelling usm.eprints-560602022-12-20T09:14:09Z http://eprints.usm.my/56060/ Wideband Dielectric Feeder For K-Band Parabolic Antenna Ahmad Zubir, Ihsan T Technology TK Electrical Engineering. Electronics. Nuclear Engineering Parabolic antennas are one of vital devices for long distance communication such as radio relay links and satellite links due to their high gain, high directivity and high power handling feature. In addition, hat feeder is widely used as a feeder for parabolic antennas due to low cross-polarization level, low sidelobes and low reflection coefficient. However, hat feeder has narrow bandwidth up to 30% which cannot be used in wideband application. This thesis describes the development and analysis of wideband feeder of parabolic antenna using dielectric resonator (DR) feeder. There are two designs of wideband dielectric resonator antenna (DRA) using stacked structure with two different shapes which are cylindrical and half cylindrical DRs are proposed in this work. The cylindrical DRs used RO4003C, FR4 and RO6010, while the half cylindrical DRs used alumina (Al2O3), silica (SiO2) and magnesium zirconate (MgZrO3). The stacked perforated DRA (SPDRA) achieved bandwidth of 75.8 % with the average gain of 5.65 dBi using perforated techniques, whereas the stacked half cylindrical DRA (SHCDRA) has bandwidth of 61.01% with the average gain range 4.885 dBi, with each of the half cylindrical are rotated by angle of 30'brelative to its neighboring layer. The bandwidth measurement results for SPDRA and SHCDRA designs show a reasonable agreement with different of 2.7% and 0.48%, respectively in comparison with simulation. Both of the proposed DRAs were mounted on the parabolic reflector and the average gain and 3 dB beamwidth are achieved 27.75 dBi, 27.08 dBi and 4.5' to 5.8 and 4.9' to 6.3' respectively. A parametric analysis is carried out to analyze and verify the characteristics of the proposed antennas by using Computer Simulation Technology (CST) software. 2018-07-01 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/56060/1/Wideband%20Dielectric%20Feeder%20For%20K-Band%20Parabolic%20Antenna_Ihsan%20Ahmad%20Zubir.pdf Ahmad Zubir, Ihsan (2018) Wideband Dielectric Feeder For K-Band Parabolic Antenna. PhD thesis, Universiti Sains Malaysia.
spellingShingle T Technology
TK Electrical Engineering. Electronics. Nuclear Engineering
Ahmad Zubir, Ihsan
Wideband Dielectric Feeder For K-Band Parabolic Antenna
title Wideband Dielectric Feeder For K-Band Parabolic Antenna
title_full Wideband Dielectric Feeder For K-Band Parabolic Antenna
title_fullStr Wideband Dielectric Feeder For K-Band Parabolic Antenna
title_full_unstemmed Wideband Dielectric Feeder For K-Band Parabolic Antenna
title_short Wideband Dielectric Feeder For K-Band Parabolic Antenna
title_sort wideband dielectric feeder for k band parabolic antenna
topic T Technology
TK Electrical Engineering. Electronics. Nuclear Engineering
url http://eprints.usm.my/56060/1/Wideband%20Dielectric%20Feeder%20For%20K-Band%20Parabolic%20Antenna_Ihsan%20Ahmad%20Zubir.pdf
work_keys_str_mv AT ahmadzubirihsan widebanddielectricfeederforkbandparabolicantenna