Characteristic wavelength optimization for partial least squares regression using improved flower pollination algorithm

Wavelength selection is crucial to the success of near-infrared (NIR) spectroscopy analysis as it considerably improves the generalization of the multivariate model and reduces model complexity. This study proposes a new wavelength selection method, interval flower pollination algorithm (iFPA), fo...

Full description

Bibliographic Details
Main Authors: Pauline Ong, Pauline Ong, Jinbao Jian, Jinbao Jian, Jianghua Yin, Jianghua Yin, Guodong Ma, Guodong Ma
Format: Article
Language:English
Published: Elsevier 2023
Subjects:
Online Access:http://eprints.uthm.edu.my/10158/1/J16308_a58a04fb74a4c20d3aa9da2a1947e460.pdf
Description
Summary:Wavelength selection is crucial to the success of near-infrared (NIR) spectroscopy analysis as it considerably improves the generalization of the multivariate model and reduces model complexity. This study proposes a new wavelength selection method, interval flower pollination algorithm (iFPA), for spectral variable selection in the partial least squares regression (PLSR) model. The proposed iFPA consists of three phases. First, the flower pollination algorithm is applied to search for informative spectral variables, followed by variable elimination. Subsequently, the iFPA performs a local search to determine the best continuous interval spectral variables. The interpretability of the selected variables is assessed on three public NIR datasets (corn, diesel and soil datasets). Performance comparison with other competing wavelength selection methods shows that the iFPA used in conjunction with the PLSR model gives better prediction performance, with the root mean square error of prediction values of 0.0096–0.0727, 0.0015–3.9717 and 1.3388–29.1144 are obtained for various responses in corn, diesel and soil datasets, respectively.