Modification of bauxite residue with oxalic acid for improved performance in intumescent coatings
Valorization of bauxite residue (BR) enhances the dynamics of its application in intumescent coating for fire retarding systems. This BR, an alumina production waste could contain up to 45% ferrous oxide along with residual aluminous minerals. In an attempt to optimize the fire retardant properties...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021
|
Subjects: | |
Online Access: | http://eprints.uthm.edu.my/2679/1/J12148_7b37ec5e77eab402f07f22ac6d174e31.pdf |
_version_ | 1796868694055321600 |
---|---|
author | Adiat, I. Arogundade S.M.Megat-Yusoff, Puteri Ahmad, Faiz H.Bhat, Aamir O.Afolabi, Lukmon |
author_facet | Adiat, I. Arogundade S.M.Megat-Yusoff, Puteri Ahmad, Faiz H.Bhat, Aamir O.Afolabi, Lukmon |
author_sort | Adiat, I. Arogundade |
collection | UTHM |
description | Valorization of bauxite residue (BR) enhances the dynamics of its application in intumescent coating for fire retarding systems. This BR, an alumina production waste could contain up to 45% ferrous oxide along with residual aluminous minerals. In an attempt to optimize the fire retardant properties of these minerals in intumescent systems, BR was treated in oxalic acid, varying the heating temperature between 50 °C and 100 °C at a constant pH of 2.65. X-ray florescence spectrometry revealed up to 80% reduction in iron content and total dissolution of desilication products (DSPs). The process temperature was found to affect the efficiency with which iron oxide was removed and with which the dissolved DSPs were precipitated as aluminum hydrates. X-ray diffraction revealed increased crystallinity and a gibbsite-dominated compound. Incorporation of the modified bauxite residues into a control intumescing formulation resulted in improved endothermic cooling, increased char expansion and char reinforcement. An inverse relationship appeared to exist between aluminum hydrates and iron as removal of iron led to enhanced intumescence and increased char expansion while higher iron content led to a compact, less expanded char. A balance of the fire retarding minerals occurred at a leaching temperature of 75 °C in oxalic acid. Best heat shielding performance thus occurred at XBR75-IC5 as char expansion increased by 12% and the substrate temperature reduced by 31% over the control IC system. Thus, BR may act as alternative fire retardant filler for intumescing systems. |
first_indexed | 2024-03-05T21:43:38Z |
format | Article |
id | uthm.eprints-2679 |
institution | Universiti Tun Hussein Onn Malaysia |
language | English |
last_indexed | 2024-03-05T21:43:38Z |
publishDate | 2021 |
publisher | Elsevier |
record_format | dspace |
spelling | uthm.eprints-26792021-10-26T03:19:31Z http://eprints.uthm.edu.my/2679/ Modification of bauxite residue with oxalic acid for improved performance in intumescent coatings Adiat, I. Arogundade S.M.Megat-Yusoff, Puteri Ahmad, Faiz H.Bhat, Aamir O.Afolabi, Lukmon TP155-156 Chemical engineering Valorization of bauxite residue (BR) enhances the dynamics of its application in intumescent coating for fire retarding systems. This BR, an alumina production waste could contain up to 45% ferrous oxide along with residual aluminous minerals. In an attempt to optimize the fire retardant properties of these minerals in intumescent systems, BR was treated in oxalic acid, varying the heating temperature between 50 °C and 100 °C at a constant pH of 2.65. X-ray florescence spectrometry revealed up to 80% reduction in iron content and total dissolution of desilication products (DSPs). The process temperature was found to affect the efficiency with which iron oxide was removed and with which the dissolved DSPs were precipitated as aluminum hydrates. X-ray diffraction revealed increased crystallinity and a gibbsite-dominated compound. Incorporation of the modified bauxite residues into a control intumescing formulation resulted in improved endothermic cooling, increased char expansion and char reinforcement. An inverse relationship appeared to exist between aluminum hydrates and iron as removal of iron led to enhanced intumescence and increased char expansion while higher iron content led to a compact, less expanded char. A balance of the fire retarding minerals occurred at a leaching temperature of 75 °C in oxalic acid. Best heat shielding performance thus occurred at XBR75-IC5 as char expansion increased by 12% and the substrate temperature reduced by 31% over the control IC system. Thus, BR may act as alternative fire retardant filler for intumescing systems. Elsevier 2021 Article PeerReviewed text en http://eprints.uthm.edu.my/2679/1/J12148_7b37ec5e77eab402f07f22ac6d174e31.pdf Adiat, I. Arogundade and S.M.Megat-Yusoff, Puteri and Ahmad, Faiz and H.Bhat, Aamir and O.Afolabi, Lukmon (2021) Modification of bauxite residue with oxalic acid for improved performance in intumescent coatings. Journal of Materials Research and Technology, 12. pp. 679-687. https://doi.org/10.1016/j.jmrt.2021.03.010 |
spellingShingle | TP155-156 Chemical engineering Adiat, I. Arogundade S.M.Megat-Yusoff, Puteri Ahmad, Faiz H.Bhat, Aamir O.Afolabi, Lukmon Modification of bauxite residue with oxalic acid for improved performance in intumescent coatings |
title | Modification of bauxite residue with oxalic acid for improved performance in intumescent coatings |
title_full | Modification of bauxite residue with oxalic acid for improved performance in intumescent coatings |
title_fullStr | Modification of bauxite residue with oxalic acid for improved performance in intumescent coatings |
title_full_unstemmed | Modification of bauxite residue with oxalic acid for improved performance in intumescent coatings |
title_short | Modification of bauxite residue with oxalic acid for improved performance in intumescent coatings |
title_sort | modification of bauxite residue with oxalic acid for improved performance in intumescent coatings |
topic | TP155-156 Chemical engineering |
url | http://eprints.uthm.edu.my/2679/1/J12148_7b37ec5e77eab402f07f22ac6d174e31.pdf |
work_keys_str_mv | AT adiatiarogundade modificationofbauxiteresiduewithoxalicacidforimprovedperformanceinintumescentcoatings AT smmegatyusoffputeri modificationofbauxiteresiduewithoxalicacidforimprovedperformanceinintumescentcoatings AT ahmadfaiz modificationofbauxiteresiduewithoxalicacidforimprovedperformanceinintumescentcoatings AT hbhataamir modificationofbauxiteresiduewithoxalicacidforimprovedperformanceinintumescentcoatings AT oafolabilukmon modificationofbauxiteresiduewithoxalicacidforimprovedperformanceinintumescentcoatings |