Empirical bayesian binary classification forests using bootstrap prior

In this paper, we present a new method called Empirical Bayesian Random Forest (EBRF) for binary classification problem. The prior ingredient for the method was obtained using the bootstrap prior technique. EBRF addresses explicitly low accuracy problem in Random Forest (RF) classifier when the numb...

Full description

Bibliographic Details
Main Authors: Olaniran, Oyebayo Ridwan, Abdullah, Mohd Asrul Affendi, Gopal Pillay, Khuneswari A/P, Olaniran, Saidat Fehintola
Format: Article
Published: Science Publishing Corporation 2018
Subjects:
Description
Summary:In this paper, we present a new method called Empirical Bayesian Random Forest (EBRF) for binary classification problem. The prior ingredient for the method was obtained using the bootstrap prior technique. EBRF addresses explicitly low accuracy problem in Random Forest (RF) classifier when the number of relevant input variables is relatively lower compared to the total number of input variables. The improvement was achieved by replacing the arbitrary subsample variable size with empirical Bayesian estimate. An illustration of the proposed, and existing methods was performed using five high-dimensional microarray datasets that emanated from colon, breast, lymphoma and Central Nervous System (CNS) cancer tumours. Results from the data analysis revealed that EBRF provides reasonably higher accuracy, sensitivity, specificity and Area Under Receiver Operating Characteristics Curve (AUC) than RF in most of the datasets used.