A novel selection of optimal statistical features in the DWPT domain for discrimination of ictal and seizure-free electroencephalography signals
Properly determining the discriminative features which characterize the inherent behaviors of electroencephalography (EEG) signals remains a great challenge for epileptic seizure detection. In this present study, a novel feature selection scheme based on the discrete wavelet packet decomposition and...
المؤلفون الرئيسيون: | Ong, Pauline, Zainuddin, Zarita, Kee, Huong Lai |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Springer Nature
2018
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.uthm.edu.my/5453/1/AJ%202018%20%28190%29.pdf |
مواد مشابهة
-
A novel selection of optimal statistical features in the DWPT domain for discrimination of ictal and seizure‑free electroencephalography signals
حسب: Ong, Pauline, وآخرون
منشور في: (2017) -
Reliable epileptic seizure detection using an improved wavelet neural network
حسب: Zainuddin, Zarita, وآخرون
منشور في: (2013) -
A harmony search-based learning algorithm for epileptic seizure prediction
حسب: Kee, Huong Lai, وآخرون
منشور في: (2016) -
Syncope vs. Seizure: Ictal Bradycardia and Ictal Asystole
حسب: Sumika Ouchida, وآخرون
منشور في: (2024-01-01) -
Machine learning algorithm for predicting seizure control after temporal lobe resection using peri-ictal electroencephalography
حسب: Shehryar R. Sheikh, وآخرون
منشور في: (2024-09-01)