Advanced neural networking and classification techniques for human brain tissues diagnoses: segmenting healthy, cancer affected and edema brain tissues

The brain tumors, are the most common and aggressive disease, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of patients. Generally, various image techniques such as Computed Tomography (CT), Magnetic Resonance I...

Full description

Bibliographic Details
Main Author: Falah Ali, Wadah
Format: Thesis
Language:English
English
English
Published: 2019
Subjects:
Online Access:http://eprints.uthm.edu.my/679/1/24p%20WADAH%20FALAH%20ALI.pdf
http://eprints.uthm.edu.my/679/2/WADAH%20FALAH%20ALI%20COPYRIGHT%20DECLARATION.pdf
http://eprints.uthm.edu.my/679/3/WADAH%20FALAH%20ALI%20WATERMARK.pdf
_version_ 1825636520612069376
author Falah Ali, Wadah
author_facet Falah Ali, Wadah
author_sort Falah Ali, Wadah
collection UTHM
description The brain tumors, are the most common and aggressive disease, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of patients. Generally, various image techniques such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI)and ultrasound image are used to evaluate the tumor in a brain, lung, liver, breast, prostate and etc. Especially, in this work MRI images are used to diagnose tumor in the brain. However, the huge amount of data generated by MRI scan thwarts manual classification of tumor vs non-tumor in a particular time. But it having some limitation accurate quantitative measurements is provided for limited number of images. Hence trusted and automatic classification scheme are essential to prevent the death rate of human. The automatic brain tumor classification is very challenging task in large spatial and structural variability of surrounding region of brain tumor. In this work, automatic brain tumor detection is proposed segment the Region Proposal Network (RPN) by Faster R-CNN algorithm. Here, the concept of transfer learning is used during training. The proposed system helps to predict the correct type of tumor with better accuracy about 99%. and classifying by using Convolutional Neural Networks (CNN). The deeper architecture design is performed by using small kernels. Experimental results show that the CNN archives rate of 98% accuracy with low complexity and compared with the all other state of arts methods.
first_indexed 2024-03-05T21:38:02Z
format Thesis
id uthm.eprints-679
institution Universiti Tun Hussein Onn Malaysia
language English
English
English
last_indexed 2024-03-05T21:38:02Z
publishDate 2019
record_format dspace
spelling uthm.eprints-6792021-08-19T05:58:56Z http://eprints.uthm.edu.my/679/ Advanced neural networking and classification techniques for human brain tissues diagnoses: segmenting healthy, cancer affected and edema brain tissues Falah Ali, Wadah QP351-495 Neurophysiology and neuropsychology The brain tumors, are the most common and aggressive disease, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of patients. Generally, various image techniques such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI)and ultrasound image are used to evaluate the tumor in a brain, lung, liver, breast, prostate and etc. Especially, in this work MRI images are used to diagnose tumor in the brain. However, the huge amount of data generated by MRI scan thwarts manual classification of tumor vs non-tumor in a particular time. But it having some limitation accurate quantitative measurements is provided for limited number of images. Hence trusted and automatic classification scheme are essential to prevent the death rate of human. The automatic brain tumor classification is very challenging task in large spatial and structural variability of surrounding region of brain tumor. In this work, automatic brain tumor detection is proposed segment the Region Proposal Network (RPN) by Faster R-CNN algorithm. Here, the concept of transfer learning is used during training. The proposed system helps to predict the correct type of tumor with better accuracy about 99%. and classifying by using Convolutional Neural Networks (CNN). The deeper architecture design is performed by using small kernels. Experimental results show that the CNN archives rate of 98% accuracy with low complexity and compared with the all other state of arts methods. 2019-06 Thesis NonPeerReviewed text en http://eprints.uthm.edu.my/679/1/24p%20WADAH%20FALAH%20ALI.pdf text en http://eprints.uthm.edu.my/679/2/WADAH%20FALAH%20ALI%20COPYRIGHT%20DECLARATION.pdf text en http://eprints.uthm.edu.my/679/3/WADAH%20FALAH%20ALI%20WATERMARK.pdf Falah Ali, Wadah (2019) Advanced neural networking and classification techniques for human brain tissues diagnoses: segmenting healthy, cancer affected and edema brain tissues. Masters thesis, Universiti Tun Hussein Onn Malaysia.
spellingShingle QP351-495 Neurophysiology and neuropsychology
Falah Ali, Wadah
Advanced neural networking and classification techniques for human brain tissues diagnoses: segmenting healthy, cancer affected and edema brain tissues
title Advanced neural networking and classification techniques for human brain tissues diagnoses: segmenting healthy, cancer affected and edema brain tissues
title_full Advanced neural networking and classification techniques for human brain tissues diagnoses: segmenting healthy, cancer affected and edema brain tissues
title_fullStr Advanced neural networking and classification techniques for human brain tissues diagnoses: segmenting healthy, cancer affected and edema brain tissues
title_full_unstemmed Advanced neural networking and classification techniques for human brain tissues diagnoses: segmenting healthy, cancer affected and edema brain tissues
title_short Advanced neural networking and classification techniques for human brain tissues diagnoses: segmenting healthy, cancer affected and edema brain tissues
title_sort advanced neural networking and classification techniques for human brain tissues diagnoses segmenting healthy cancer affected and edema brain tissues
topic QP351-495 Neurophysiology and neuropsychology
url http://eprints.uthm.edu.my/679/1/24p%20WADAH%20FALAH%20ALI.pdf
http://eprints.uthm.edu.my/679/2/WADAH%20FALAH%20ALI%20COPYRIGHT%20DECLARATION.pdf
http://eprints.uthm.edu.my/679/3/WADAH%20FALAH%20ALI%20WATERMARK.pdf
work_keys_str_mv AT falahaliwadah advancedneuralnetworkingandclassificationtechniquesforhumanbraintissuesdiagnosessegmentinghealthycanceraffectedandedemabraintissues