Modelling an electrically turbocharged engine and predicting the performance under steady-state engine

This paper discusses the evaluation of the energy recovery potential of turboshaft separated (decoupled) electric turbocharger and its boosting capability in a spark-ignition engine through simulation-based work and comparing it to a conventional turbocharged engine in terms of fuel consumptio...

Full description

Bibliographic Details
Main Authors: K. Subramaniam, K. Subramaniam, Wan Salim, W. S. I.
Format: Article
Language:English
Published: Universiti Malaysia Pahang 2021
Subjects:
Online Access:http://eprints.uthm.edu.my/6906/1/J13957_58dbfc6b3ca5cdd804fb40dfcf23032d.pdf
_version_ 1796869455385460736
author K. Subramaniam, K. Subramaniam
Wan Salim, W. S. I.
author_facet K. Subramaniam, K. Subramaniam
Wan Salim, W. S. I.
author_sort K. Subramaniam, K. Subramaniam
collection UTHM
description This paper discusses the evaluation of the energy recovery potential of turboshaft separated (decoupled) electric turbocharger and its boosting capability in a spark-ignition engine through simulation-based work and comparing it to a conventional turbocharged engine in terms of fuel consumption. The main objective of this study is to evaluate the amount of energy that can be recovered over a steady state full-load operating conditions and boosting capabilities from a decoupled electric turbocharger of an SI engine using a 1-D engine simulation software. The electric turbocharged system includes two motors and a battery pack to store the recovered electrical energy. Gt-Power engine simulation software was used to model both engines and utilizes each of the components described earlier. The conventional turbocharged engine is first simulated to obtain its performance characteristics. An electric turbocharger is then modelled by separating the turbine from the compressor. The turbine is connected to the generator and battery, whereas the compressor is connected to the motor. This electrically turbocharged engine was modelled at full load and controlled to produce the same brake power (kW) and brake torque (Nm) properties as the similarly sized conventional turbocharged engine. This step was necessary to investigate the effect an electrical turbocharger without a wastegate has on the engine’s BSFC and determine the energy that can be recovered by the electrical boosting components, and cycle�averaged fuel consumption was evaluated. The evaluation of energy recovered from the electrically turbocharged engine from the analysis can assessed in full-load steady state conditions that can be useful for research in part-load and transient studies involving the decoupled electrical turbocharger. The study revealed that a maximum of 21.6 kW of electrical power can be recovered from the decoupled electrical turbocharger system, whereas 2.6% increase in fuel consumption can be observed at 5000 rpm engine speed.
first_indexed 2024-03-05T21:55:09Z
format Article
id uthm.eprints-6906
institution Universiti Tun Hussein Onn Malaysia
language English
last_indexed 2024-03-05T21:55:09Z
publishDate 2021
publisher Universiti Malaysia Pahang
record_format dspace
spelling uthm.eprints-69062022-04-12T06:52:04Z http://eprints.uthm.edu.my/6906/ Modelling an electrically turbocharged engine and predicting the performance under steady-state engine K. Subramaniam, K. Subramaniam Wan Salim, W. S. I. TK4001-4102 Applications of electric power This paper discusses the evaluation of the energy recovery potential of turboshaft separated (decoupled) electric turbocharger and its boosting capability in a spark-ignition engine through simulation-based work and comparing it to a conventional turbocharged engine in terms of fuel consumption. The main objective of this study is to evaluate the amount of energy that can be recovered over a steady state full-load operating conditions and boosting capabilities from a decoupled electric turbocharger of an SI engine using a 1-D engine simulation software. The electric turbocharged system includes two motors and a battery pack to store the recovered electrical energy. Gt-Power engine simulation software was used to model both engines and utilizes each of the components described earlier. The conventional turbocharged engine is first simulated to obtain its performance characteristics. An electric turbocharger is then modelled by separating the turbine from the compressor. The turbine is connected to the generator and battery, whereas the compressor is connected to the motor. This electrically turbocharged engine was modelled at full load and controlled to produce the same brake power (kW) and brake torque (Nm) properties as the similarly sized conventional turbocharged engine. This step was necessary to investigate the effect an electrical turbocharger without a wastegate has on the engine’s BSFC and determine the energy that can be recovered by the electrical boosting components, and cycle�averaged fuel consumption was evaluated. The evaluation of energy recovered from the electrically turbocharged engine from the analysis can assessed in full-load steady state conditions that can be useful for research in part-load and transient studies involving the decoupled electrical turbocharger. The study revealed that a maximum of 21.6 kW of electrical power can be recovered from the decoupled electrical turbocharger system, whereas 2.6% increase in fuel consumption can be observed at 5000 rpm engine speed. Universiti Malaysia Pahang 2021 Article PeerReviewed text en http://eprints.uthm.edu.my/6906/1/J13957_58dbfc6b3ca5cdd804fb40dfcf23032d.pdf K. Subramaniam, K. Subramaniam and Wan Salim, W. S. I. (2021) Modelling an electrically turbocharged engine and predicting the performance under steady-state engine. International Journal of Automotive and Mechanical Engineering (IJAME), 18 (4). pp. 944-9252. ISSN 2229-8649 https://doi.org/10.15282/ijame.18.4.2021.08.0711
spellingShingle TK4001-4102 Applications of electric power
K. Subramaniam, K. Subramaniam
Wan Salim, W. S. I.
Modelling an electrically turbocharged engine and predicting the performance under steady-state engine
title Modelling an electrically turbocharged engine and predicting the performance under steady-state engine
title_full Modelling an electrically turbocharged engine and predicting the performance under steady-state engine
title_fullStr Modelling an electrically turbocharged engine and predicting the performance under steady-state engine
title_full_unstemmed Modelling an electrically turbocharged engine and predicting the performance under steady-state engine
title_short Modelling an electrically turbocharged engine and predicting the performance under steady-state engine
title_sort modelling an electrically turbocharged engine and predicting the performance under steady state engine
topic TK4001-4102 Applications of electric power
url http://eprints.uthm.edu.my/6906/1/J13957_58dbfc6b3ca5cdd804fb40dfcf23032d.pdf
work_keys_str_mv AT ksubramaniamksubramaniam modellinganelectricallyturbochargedengineandpredictingtheperformanceundersteadystateengine
AT wansalimwsi modellinganelectricallyturbochargedengineandpredictingtheperformanceundersteadystateengine