An experimental verification of the binary method for three-phase voltage source inverter
The purpose of this study is to investigate the characteristics of the Binary method through experimentation. By resolving the maximum voltage conversion factor, effect of switching frequency, harmonic elimination, total harmonic distortion and harmonics loss factor, we are able to investigate...
Main Author: | |
---|---|
Format: | Thesis |
Language: | English English English |
Published: |
2005
|
Subjects: | |
Online Access: | http://eprints.uthm.edu.my/7726/1/24p%20PANG%20SHEN%20YEE.pdf http://eprints.uthm.edu.my/7726/2/PANG%20SHEN%20YEE%20COPYRIGHT%20DECLARATION.pdf http://eprints.uthm.edu.my/7726/3/PANG%20SHEN%20YEE%20WATERMARK.pdf |
Summary: | The purpose of this study is to investigate the characteristics of the Binary
method through experimentation. By resolving the maximum voltage conversion
factor, effect of switching frequency, harmonic elimination, total harmonic distortion
and harmonics loss factor, we are able to investigate the performance of the Binary
method for controlling a three-phase voltage source inverter. Both the theoretical
approach and experimental work are based on a 12 -pulses per cycle binary wave.
The switching angles of the 3 pulses per quadrant are obtained from the Fourier
analysis and Newton-Raphson method and then transformed into time delay and
stored as a look up table in PIC Microcontroller. The IGBT switches in the inverter
section are triggered by the microcontroller to generate the desired output waveform.
For analysis, the output voltage waveforms are analyzed using "The Output
Processor" ( TOP) software. Through the experimental findings, the voltage
conversion factor for Binary method is 0.92. The ideal switching frequency for the
Binary method is found to be from 180Hz to 1800Hz. The Binary method shows the
ability to suppress the lower order harmonic content. Also in this work, the harmonic
loss factor and total harmonic distortion for different delta connected loads are
investigated. |
---|