A comprehensive insight into autophagy and its potential signaling pathways as a therapeutic target in podocyte injury

As part of the glomerular filtration membrane, podocyte is terminally differentiated, structurally unique, and highly specialized in maintaining kidney function. Proteinuria caused by podocyte injury (foot process effacement) is the clinical symptom of various kidney diseases (CKD), including nephro...

Full description

Bibliographic Details
Main Authors: Teh, Yoong Mond, Mualif, Siti Aisyah, Lim, Soo Kun
Format: Article
Language:English
Published: Elsevier Ltd. 2022
Subjects:
Online Access:http://eprints.utm.my/100933/1/YoongMoonTeh2022_AComprehensiveInsightintoAutophagy.pdf
Description
Summary:As part of the glomerular filtration membrane, podocyte is terminally differentiated, structurally unique, and highly specialized in maintaining kidney function. Proteinuria caused by podocyte injury (foot process effacement) is the clinical symptom of various kidney diseases (CKD), including nephrotic syndrome. Podocyte autophagy has become a powerful therapeutic strategy target in ameliorating podocyte injury. Autophagy is known to be associated significantly with sirtuin-1, proteinuria, and podocyte injury. Various key findings in podocyte autophagy were reported in the past ten years, such as the role of endoplasmic reticulum (ER) stress in podocyte autophagy impairment, podocyte autophagy-related gene, essential roles of the signaling pathways: Mammalian Target of Rapamycin (mTOR)/ Phosphoinositide 3-kinase (PI3k)/ serine/threonine kinase 1 (Akt) in podocyte autophagy. These significant factors caused podocyte injury associated with autophagy impairment. Sirtuin-1 was reported to have a vital key role in mTOR signaling, 5′AMP-activated protein kinase (AMPK) regulation, autophagy activation, and various critical pathways associated with podocyte's function and health; it has potential value to podocyte injury pathogenesis investigation. From these findings, podocyte autophagy has become an attractive therapeutic strategy to ameliorate podocyte injury, and this review will provide an in-depth review on therapeutic targets he podocyte autophagy.