Hybridization of cuckoo search and bat algorithm for optimizing machining performances in deep hole drilling

Deep Hole Drilling (DHD) is a machining process employed to produce holes with a length exceeding ten times of its diameter. The machine is utilized to assemble high-precision workpieces. The significant issue in DHD is in producing the best results of machining performances at the optimal value thr...

Full description

Bibliographic Details
Main Author: Mohamad, Azizah
Format: Thesis
Language:English
Published: 2022
Subjects:
Online Access:http://eprints.utm.my/101551/1/AzizahMohamadPSC2022.pdf
_version_ 1796867089158373376
author Mohamad, Azizah
author_facet Mohamad, Azizah
author_sort Mohamad, Azizah
collection ePrints
description Deep Hole Drilling (DHD) is a machining process employed to produce holes with a length exceeding ten times of its diameter. The machine is utilized to assemble high-precision workpieces. The significant issue in DHD is in producing the best results of machining performances at the optimal value through the selection of machining parameters. In machining, achieving the optimum value of machining parameters is related to the performance and quality of products. Hence, the modelling and optimisation approaches are suitable for identifying the optimal DHD parameters to improve DHD performance. In this study, the real DHD experimentation based on an experiment (DOE) of full factorial with added centre points is conduct to investigate the influence of DHD machining parameters: feed rate (f), spindle speed (s), depth of hole (d) and Minimum Quantity Lubricant, MQL (m) on surface roughness (Ra), roundness (Rd), and cylindricity (Cy). The modelling process employed in the regression analysis consists of four types of mathematical models-multiple linear regression (MLR), two-factor interaction (2FI), multiple polynomial regression (MPR), and stepwise regression (SR)-were developed based on experimental data and used as an objective function for optimisation process. In the optimisation, Cuckoo Search (CS) was implemented in order to optimize the DHD machining performances. However, previous research indicates that CS has some weaknesses: trapping in local optima and slow convergence rate. Thus, a new hybridization between Cuckoo Search and Bat Algorithm (CS-BA) was developed to improve the DHD performance. Analysis of the results indicates that, CS-BA produced the minimum values and outperformed the standard CS algorithm and established computational techniques: ABC, GR-SVM, Integrated GA-SA-Type1, and Integrated GA-SA-Type2. Overall, it can be concluded that CS-BA hybridization has enhanced the quality and productivity of DHD problems significantly.
first_indexed 2024-03-05T21:21:58Z
format Thesis
id utm.eprints-101551
institution Universiti Teknologi Malaysia - ePrints
language English
last_indexed 2024-03-05T21:21:58Z
publishDate 2022
record_format dspace
spelling utm.eprints-1015512023-06-26T02:04:34Z http://eprints.utm.my/101551/ Hybridization of cuckoo search and bat algorithm for optimizing machining performances in deep hole drilling Mohamad, Azizah QA75 Electronic computers. Computer science Deep Hole Drilling (DHD) is a machining process employed to produce holes with a length exceeding ten times of its diameter. The machine is utilized to assemble high-precision workpieces. The significant issue in DHD is in producing the best results of machining performances at the optimal value through the selection of machining parameters. In machining, achieving the optimum value of machining parameters is related to the performance and quality of products. Hence, the modelling and optimisation approaches are suitable for identifying the optimal DHD parameters to improve DHD performance. In this study, the real DHD experimentation based on an experiment (DOE) of full factorial with added centre points is conduct to investigate the influence of DHD machining parameters: feed rate (f), spindle speed (s), depth of hole (d) and Minimum Quantity Lubricant, MQL (m) on surface roughness (Ra), roundness (Rd), and cylindricity (Cy). The modelling process employed in the regression analysis consists of four types of mathematical models-multiple linear regression (MLR), two-factor interaction (2FI), multiple polynomial regression (MPR), and stepwise regression (SR)-were developed based on experimental data and used as an objective function for optimisation process. In the optimisation, Cuckoo Search (CS) was implemented in order to optimize the DHD machining performances. However, previous research indicates that CS has some weaknesses: trapping in local optima and slow convergence rate. Thus, a new hybridization between Cuckoo Search and Bat Algorithm (CS-BA) was developed to improve the DHD performance. Analysis of the results indicates that, CS-BA produced the minimum values and outperformed the standard CS algorithm and established computational techniques: ABC, GR-SVM, Integrated GA-SA-Type1, and Integrated GA-SA-Type2. Overall, it can be concluded that CS-BA hybridization has enhanced the quality and productivity of DHD problems significantly. 2022 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/101551/1/AzizahMohamadPSC2022.pdf Mohamad, Azizah (2022) Hybridization of cuckoo search and bat algorithm for optimizing machining performances in deep hole drilling. PhD thesis, Universiti Teknologi Malaysia. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:150569
spellingShingle QA75 Electronic computers. Computer science
Mohamad, Azizah
Hybridization of cuckoo search and bat algorithm for optimizing machining performances in deep hole drilling
title Hybridization of cuckoo search and bat algorithm for optimizing machining performances in deep hole drilling
title_full Hybridization of cuckoo search and bat algorithm for optimizing machining performances in deep hole drilling
title_fullStr Hybridization of cuckoo search and bat algorithm for optimizing machining performances in deep hole drilling
title_full_unstemmed Hybridization of cuckoo search and bat algorithm for optimizing machining performances in deep hole drilling
title_short Hybridization of cuckoo search and bat algorithm for optimizing machining performances in deep hole drilling
title_sort hybridization of cuckoo search and bat algorithm for optimizing machining performances in deep hole drilling
topic QA75 Electronic computers. Computer science
url http://eprints.utm.my/101551/1/AzizahMohamadPSC2022.pdf
work_keys_str_mv AT mohamadazizah hybridizationofcuckoosearchandbatalgorithmforoptimizingmachiningperformancesindeepholedrilling