Optimization of process parameters in friction stir welding of aluminum 5451 in marine applications
Friction stir welding (FSW) is one of the primary fabrication techniques for joining different components, and it has become popular, especially in aluminum alloy structures for marine applications. The welded joint with the friction stir process greatly depends on the process parameters, i.e., feed...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI
2022
|
Subjects: | |
Online Access: | http://eprints.utm.my/103407/1/AhmadKhairiAbdWahab2022_ASharedVisiononthe2004IndianOcean.pdf |
_version_ | 1796867454813601792 |
---|---|
author | Ahmed, Shoaib ur Rahman, Rana Atta Awan, Awais Ahmad, Sajjad Akram, Waseem Amjad, Muhammad Rahimian Koloor, Seyed Saeid |
author_facet | Ahmed, Shoaib ur Rahman, Rana Atta Awan, Awais Ahmad, Sajjad Akram, Waseem Amjad, Muhammad Rahimian Koloor, Seyed Saeid |
author_sort | Ahmed, Shoaib |
collection | ePrints |
description | Friction stir welding (FSW) is one of the primary fabrication techniques for joining different components, and it has become popular, especially in aluminum alloy structures for marine applications. The welded joint with the friction stir process greatly depends on the process parameters, i.e., feed rate, rotational speed, and pin profile of the tool. In the current study, plates of aluminum 5451 alloy were joined by the FSW technique, and the Taguchi method was used to find the process parameters at an optimal level. The maximum value of tensile strength, i.e., 160.6907 MPa, was achieved using optimum welding conditions of a tool rotation speed of 1400, a feed rate of 18 mm/min, and the tool pin with threads. The maximum value of hardness, i.e., 81.056 HV, was achieved using optimum conditions of 1200 tool rotational speed and a feed rate of 18 mm/min with a tool pin profile having threads. In addition, the contribution in terms of the percentage of each input parameter was found by the analysis of variance (ANOVA). The ANOVA results revealed that the pin profile of the tool has the maximum contribution of 67.77% and 62.42% in achieving the optimum value of tensile strength and hardness, respectively. The study also investigated the joint efficiency of the friction stir welded joint, hardness at the weld zone, and metallography on FSW samples at the optimized level. The effectiveness and reliability of FSW joints for shipping industry applications can be observed by joint efficiency. That was investigated at optimum conditions, and it comes out to be 80.5%. |
first_indexed | 2024-03-05T21:27:30Z |
format | Article |
id | utm.eprints-103407 |
institution | Universiti Teknologi Malaysia - ePrints |
language | English |
last_indexed | 2024-03-05T21:27:30Z |
publishDate | 2022 |
publisher | MDPI |
record_format | dspace |
spelling | utm.eprints-1034072023-11-05T09:47:52Z http://eprints.utm.my/103407/ Optimization of process parameters in friction stir welding of aluminum 5451 in marine applications Ahmed, Shoaib ur Rahman, Rana Atta Awan, Awais Ahmad, Sajjad Akram, Waseem Amjad, Muhammad Rahimian Koloor, Seyed Saeid TA Engineering (General). Civil engineering (General) Friction stir welding (FSW) is one of the primary fabrication techniques for joining different components, and it has become popular, especially in aluminum alloy structures for marine applications. The welded joint with the friction stir process greatly depends on the process parameters, i.e., feed rate, rotational speed, and pin profile of the tool. In the current study, plates of aluminum 5451 alloy were joined by the FSW technique, and the Taguchi method was used to find the process parameters at an optimal level. The maximum value of tensile strength, i.e., 160.6907 MPa, was achieved using optimum welding conditions of a tool rotation speed of 1400, a feed rate of 18 mm/min, and the tool pin with threads. The maximum value of hardness, i.e., 81.056 HV, was achieved using optimum conditions of 1200 tool rotational speed and a feed rate of 18 mm/min with a tool pin profile having threads. In addition, the contribution in terms of the percentage of each input parameter was found by the analysis of variance (ANOVA). The ANOVA results revealed that the pin profile of the tool has the maximum contribution of 67.77% and 62.42% in achieving the optimum value of tensile strength and hardness, respectively. The study also investigated the joint efficiency of the friction stir welded joint, hardness at the weld zone, and metallography on FSW samples at the optimized level. The effectiveness and reliability of FSW joints for shipping industry applications can be observed by joint efficiency. That was investigated at optimum conditions, and it comes out to be 80.5%. MDPI 2022 Article PeerReviewed application/pdf en http://eprints.utm.my/103407/1/AhmadKhairiAbdWahab2022_ASharedVisiononthe2004IndianOcean.pdf Ahmed, Shoaib and ur Rahman, Rana Atta and Awan, Awais and Ahmad, Sajjad and Akram, Waseem and Amjad, Muhammad and Rahimian Koloor, Seyed Saeid (2022) Optimization of process parameters in friction stir welding of aluminum 5451 in marine applications. Journal of Marine Science and Engineering, 10 (10). pp. 1-13. ISSN 2077-1312 http://dx.doi.org/10.3390/jmse10101539 DOI: 10.3390/jmse10101539 |
spellingShingle | TA Engineering (General). Civil engineering (General) Ahmed, Shoaib ur Rahman, Rana Atta Awan, Awais Ahmad, Sajjad Akram, Waseem Amjad, Muhammad Rahimian Koloor, Seyed Saeid Optimization of process parameters in friction stir welding of aluminum 5451 in marine applications |
title | Optimization of process parameters in friction stir welding of aluminum 5451 in marine applications |
title_full | Optimization of process parameters in friction stir welding of aluminum 5451 in marine applications |
title_fullStr | Optimization of process parameters in friction stir welding of aluminum 5451 in marine applications |
title_full_unstemmed | Optimization of process parameters in friction stir welding of aluminum 5451 in marine applications |
title_short | Optimization of process parameters in friction stir welding of aluminum 5451 in marine applications |
title_sort | optimization of process parameters in friction stir welding of aluminum 5451 in marine applications |
topic | TA Engineering (General). Civil engineering (General) |
url | http://eprints.utm.my/103407/1/AhmadKhairiAbdWahab2022_ASharedVisiononthe2004IndianOcean.pdf |
work_keys_str_mv | AT ahmedshoaib optimizationofprocessparametersinfrictionstirweldingofaluminum5451inmarineapplications AT urrahmanranaatta optimizationofprocessparametersinfrictionstirweldingofaluminum5451inmarineapplications AT awanawais optimizationofprocessparametersinfrictionstirweldingofaluminum5451inmarineapplications AT ahmadsajjad optimizationofprocessparametersinfrictionstirweldingofaluminum5451inmarineapplications AT akramwaseem optimizationofprocessparametersinfrictionstirweldingofaluminum5451inmarineapplications AT amjadmuhammad optimizationofprocessparametersinfrictionstirweldingofaluminum5451inmarineapplications AT rahimiankoloorseyedsaeid optimizationofprocessparametersinfrictionstirweldingofaluminum5451inmarineapplications |