Unveiling the performance of Cu-water nanofluid flow with melting heat transfer, MHD, and thermal radiation over a stretching/shrinking sheet
The use of melting heat transfer (MHT) and nanofluids for electronics cooling and energy storage efficiency has gained the attention of numerous researchers. This study investigates the effects of MHD, mixed convection, thermal radiation, stretching, and shrinking on the heat transfer characteristic...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Chemical Society
2022
|
Subjects: | |
Online Access: | http://eprints.utm.my/104864/1/LimYeouJiann2023_UnveilingthePerformanceofCuWaterNanofluid.pdf |
_version_ | 1796867741510008832 |
---|---|
author | Hyder, Arfan Lim, Yeou Jiann Khan, Ilyas Shafie, Sharidan |
author_facet | Hyder, Arfan Lim, Yeou Jiann Khan, Ilyas Shafie, Sharidan |
author_sort | Hyder, Arfan |
collection | ePrints |
description | The use of melting heat transfer (MHT) and nanofluids for electronics cooling and energy storage efficiency has gained the attention of numerous researchers. This study investigates the effects of MHD, mixed convection, thermal radiation, stretching, and shrinking on the heat transfer characteristics of a Cu-water-based nanofluid over a stretching/shrinking sheet with MHT effects. The governing equations are transformed into nonlinear ordinary differential equations and solved numerically using the Keller Box method. To the best of our knowledge, this comprehensive analysis, encompassing all of these factors, including the utilization of a robust numerical method, in a single study, has not been previously reported in the literature. Our findings demonstrate that an increase in the melting parameter leads to an enhanced rate of heat transfer, while an increase in the stretching/shrinking parameter results in a decrease in the rate of heat transfer. Additionally, we present a comprehensive analysis of the influences of all of the mentioned driving parameters. The results are presented through graphical and tabulated representations and compared with existing literature. |
first_indexed | 2024-04-09T03:45:24Z |
format | Article |
id | utm.eprints-104864 |
institution | Universiti Teknologi Malaysia - ePrints |
language | English |
last_indexed | 2024-04-09T03:45:24Z |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | dspace |
spelling | utm.eprints-1048642024-03-25T09:07:13Z http://eprints.utm.my/104864/ Unveiling the performance of Cu-water nanofluid flow with melting heat transfer, MHD, and thermal radiation over a stretching/shrinking sheet Hyder, Arfan Lim, Yeou Jiann Khan, Ilyas Shafie, Sharidan QA Mathematics The use of melting heat transfer (MHT) and nanofluids for electronics cooling and energy storage efficiency has gained the attention of numerous researchers. This study investigates the effects of MHD, mixed convection, thermal radiation, stretching, and shrinking on the heat transfer characteristics of a Cu-water-based nanofluid over a stretching/shrinking sheet with MHT effects. The governing equations are transformed into nonlinear ordinary differential equations and solved numerically using the Keller Box method. To the best of our knowledge, this comprehensive analysis, encompassing all of these factors, including the utilization of a robust numerical method, in a single study, has not been previously reported in the literature. Our findings demonstrate that an increase in the melting parameter leads to an enhanced rate of heat transfer, while an increase in the stretching/shrinking parameter results in a decrease in the rate of heat transfer. Additionally, we present a comprehensive analysis of the influences of all of the mentioned driving parameters. The results are presented through graphical and tabulated representations and compared with existing literature. American Chemical Society 2022 Article PeerReviewed application/pdf en http://eprints.utm.my/104864/1/LimYeouJiann2023_UnveilingthePerformanceofCuWaterNanofluid.pdf Hyder, Arfan and Lim, Yeou Jiann and Khan, Ilyas and Shafie, Sharidan (2022) Unveiling the performance of Cu-water nanofluid flow with melting heat transfer, MHD, and thermal radiation over a stretching/shrinking sheet. ACS Omega, 8 (32). pp. 29424-29436. ISSN 2470-1343 http://dx.doi.org/10.1021/acsomega.3c02949 DOI : 10.1021/acsomega.3c02949 |
spellingShingle | QA Mathematics Hyder, Arfan Lim, Yeou Jiann Khan, Ilyas Shafie, Sharidan Unveiling the performance of Cu-water nanofluid flow with melting heat transfer, MHD, and thermal radiation over a stretching/shrinking sheet |
title | Unveiling the performance of Cu-water nanofluid flow with melting heat transfer, MHD, and thermal radiation over a stretching/shrinking sheet |
title_full | Unveiling the performance of Cu-water nanofluid flow with melting heat transfer, MHD, and thermal radiation over a stretching/shrinking sheet |
title_fullStr | Unveiling the performance of Cu-water nanofluid flow with melting heat transfer, MHD, and thermal radiation over a stretching/shrinking sheet |
title_full_unstemmed | Unveiling the performance of Cu-water nanofluid flow with melting heat transfer, MHD, and thermal radiation over a stretching/shrinking sheet |
title_short | Unveiling the performance of Cu-water nanofluid flow with melting heat transfer, MHD, and thermal radiation over a stretching/shrinking sheet |
title_sort | unveiling the performance of cu water nanofluid flow with melting heat transfer mhd and thermal radiation over a stretching shrinking sheet |
topic | QA Mathematics |
url | http://eprints.utm.my/104864/1/LimYeouJiann2023_UnveilingthePerformanceofCuWaterNanofluid.pdf |
work_keys_str_mv | AT hyderarfan unveilingtheperformanceofcuwaternanofluidflowwithmeltingheattransfermhdandthermalradiationoverastretchingshrinkingsheet AT limyeoujiann unveilingtheperformanceofcuwaternanofluidflowwithmeltingheattransfermhdandthermalradiationoverastretchingshrinkingsheet AT khanilyas unveilingtheperformanceofcuwaternanofluidflowwithmeltingheattransfermhdandthermalradiationoverastretchingshrinkingsheet AT shafiesharidan unveilingtheperformanceofcuwaternanofluidflowwithmeltingheattransfermhdandthermalradiationoverastretchingshrinkingsheet |