Impact of MXene nanoparticle on thermohydraulic performance in a microchannel heat sink: effect of nanoparticle size

Microchannel heat sink is a cooling device that utilizes fluid flow as a heat removal agent. However, with the increasing demand for higher heat flux removal, nanoparticle has become crucial addictive in a microchannel heat sink for improving thermal performance. This study proposes using MXene nano...

Full description

Bibliographic Details
Main Authors: Mat, Mohamad Nur Hidayat, Muhammad Fidaa, Muhammad Zulhilmi
Format: Article
Published: Springer Science and Business Media Deutschland GmbH 2023
Subjects:
Description
Summary:Microchannel heat sink is a cooling device that utilizes fluid flow as a heat removal agent. However, with the increasing demand for higher heat flux removal, nanoparticle has become crucial addictive in a microchannel heat sink for improving thermal performance. This study proposes using MXene nanoparticle with base fluid in a microchannel, and this nanoparticle is used for the first time in this application. Control volume method is utilized to simulate the flow characteristic. Thermohydraulic performance is assessed by varying nanoparticle’ size ranging from 20 nm, 50 nm, 80 nm, and 135 nm. The significant results implied that MXene nanofluids with a 20-nm diameter reduced the thermal resistance by 37.25% and enhanced the heat transfer coefficient by 59.36%, which is the lowest and the highest among all nanofluids at a high Re of 1000. It was discovered that 20 nm nanofluids increase the pressure drop by only 1.95%, which is the lowest and requires the least pumping power at Re of 676. All in all, the MXene nanoparticle’s diameter of 20 nm performs for both thermal and hydraulic, which can be integrated into the following generation of cooling performance.