Investigation of the heat release rate and particle generation during fixed bed gasification of sweet sorghum stalk

Sweet sorghum (SS) is an agricultural crop that is produced commercially in Nigeria. The crop has a high biowaste energy in its stalk, which is an attractive source of bioenergy in rural areas where it is produced. The residue–to-produce ratio (RPR) of the crop is 1.25 kg of biowaste for 1 kg of SS...

Full description

Bibliographic Details
Main Authors: Olanrewaju, Francis O., Andrews, Gordon E., Li, Hu, Phylaktou, Herodotos N., Mustafa, Bintu G., Mat Kiah, Miss H.
Format: Article
Published: Elsevier Ltd 2023
Subjects:
_version_ 1811132486890029056
author Olanrewaju, Francis O.
Andrews, Gordon E.
Li, Hu
Phylaktou, Herodotos N.
Mustafa, Bintu G.
Mat Kiah, Miss H.
author_facet Olanrewaju, Francis O.
Andrews, Gordon E.
Li, Hu
Phylaktou, Herodotos N.
Mustafa, Bintu G.
Mat Kiah, Miss H.
author_sort Olanrewaju, Francis O.
collection ePrints
description Sweet sorghum (SS) is an agricultural crop that is produced commercially in Nigeria. The crop has a high biowaste energy in its stalk, which is an attractive source of bioenergy in rural areas where it is produced. The residue–to-produce ratio (RPR) of the crop is 1.25 kg of biowaste for 1 kg of SS produced. The solid residue that results from the crop can be subjected to gasification to produce combustible gases: carbon monoxide (CO), hydrocarbon gases (total hydrocarbons) and hydrogen. The combustible gases can be piped into a burner for heat or into a Compression Ignition (CI) engine for electricity generation. This will enhance energy security as well as energy equity in rural areas in Nigeria and sub-saharan African countries where the crop is also produced. This research was aimed at optimising the gasification of SS stalk residue to maximise the yield of combustible gases from the first stage of the process. The restricted ventilation cone calorimeter method was used to gasify SS stalks on a laboratory scale. The test was carried out at air flow rates per exposed flat surface area of 9, 11.2, 12.9, 14.3, 15.5, 16.3, and 19.2 g/s·m2 respectively, which controls the gasification rate or power output. The speciation of the gases that evolved from the gasification of the biomass samples was carried out by an FTIR that was calibrated for 60 species. Current uses of biomass residues in open fire heating generates toxic fine particulate emissions and this work aimed to show that this was not a greater problem with gasification. A dynamic electrical mobility particle spectrometer (DMS500) was used to measure the particulate size distribution and concentration, as an efficient gasifier should not be generating major yields of soot, which would be a problem for a downstream reciprocating engine. The optimum equivalence ratio (?) for the best energy transfer to the gaseous products was 2.1, which was similar to previous work on pine using this equipment where the optimum equivalence ratio was 2.8. The hot gases efficiency at the optimum ? was 81%, which compares well to that of 78% for pine.
first_indexed 2024-09-24T00:05:03Z
format Article
id utm.eprints-107174
institution Universiti Teknologi Malaysia - ePrints
last_indexed 2024-09-24T00:05:03Z
publishDate 2023
publisher Elsevier Ltd
record_format dspace
spelling utm.eprints-1071742024-08-28T06:54:30Z http://eprints.utm.my/107174/ Investigation of the heat release rate and particle generation during fixed bed gasification of sweet sorghum stalk Olanrewaju, Francis O. Andrews, Gordon E. Li, Hu Phylaktou, Herodotos N. Mustafa, Bintu G. Mat Kiah, Miss H. TP Chemical technology Sweet sorghum (SS) is an agricultural crop that is produced commercially in Nigeria. The crop has a high biowaste energy in its stalk, which is an attractive source of bioenergy in rural areas where it is produced. The residue–to-produce ratio (RPR) of the crop is 1.25 kg of biowaste for 1 kg of SS produced. The solid residue that results from the crop can be subjected to gasification to produce combustible gases: carbon monoxide (CO), hydrocarbon gases (total hydrocarbons) and hydrogen. The combustible gases can be piped into a burner for heat or into a Compression Ignition (CI) engine for electricity generation. This will enhance energy security as well as energy equity in rural areas in Nigeria and sub-saharan African countries where the crop is also produced. This research was aimed at optimising the gasification of SS stalk residue to maximise the yield of combustible gases from the first stage of the process. The restricted ventilation cone calorimeter method was used to gasify SS stalks on a laboratory scale. The test was carried out at air flow rates per exposed flat surface area of 9, 11.2, 12.9, 14.3, 15.5, 16.3, and 19.2 g/s·m2 respectively, which controls the gasification rate or power output. The speciation of the gases that evolved from the gasification of the biomass samples was carried out by an FTIR that was calibrated for 60 species. Current uses of biomass residues in open fire heating generates toxic fine particulate emissions and this work aimed to show that this was not a greater problem with gasification. A dynamic electrical mobility particle spectrometer (DMS500) was used to measure the particulate size distribution and concentration, as an efficient gasifier should not be generating major yields of soot, which would be a problem for a downstream reciprocating engine. The optimum equivalence ratio (?) for the best energy transfer to the gaseous products was 2.1, which was similar to previous work on pine using this equipment where the optimum equivalence ratio was 2.8. The hot gases efficiency at the optimum ? was 81%, which compares well to that of 78% for pine. Elsevier Ltd 2023 Article PeerReviewed Olanrewaju, Francis O. and Andrews, Gordon E. and Li, Hu and Phylaktou, Herodotos N. and Mustafa, Bintu G. and Mat Kiah, Miss H. (2023) Investigation of the heat release rate and particle generation during fixed bed gasification of sweet sorghum stalk. Fuel, 332 (NA). NA-NA. ISSN 0016-2361 http://dx.doi.org/10.1016/j.fuel.2022.126013 DOI : 10.1016/j.fuel.2022.126013
spellingShingle TP Chemical technology
Olanrewaju, Francis O.
Andrews, Gordon E.
Li, Hu
Phylaktou, Herodotos N.
Mustafa, Bintu G.
Mat Kiah, Miss H.
Investigation of the heat release rate and particle generation during fixed bed gasification of sweet sorghum stalk
title Investigation of the heat release rate and particle generation during fixed bed gasification of sweet sorghum stalk
title_full Investigation of the heat release rate and particle generation during fixed bed gasification of sweet sorghum stalk
title_fullStr Investigation of the heat release rate and particle generation during fixed bed gasification of sweet sorghum stalk
title_full_unstemmed Investigation of the heat release rate and particle generation during fixed bed gasification of sweet sorghum stalk
title_short Investigation of the heat release rate and particle generation during fixed bed gasification of sweet sorghum stalk
title_sort investigation of the heat release rate and particle generation during fixed bed gasification of sweet sorghum stalk
topic TP Chemical technology
work_keys_str_mv AT olanrewajufranciso investigationoftheheatreleaserateandparticlegenerationduringfixedbedgasificationofsweetsorghumstalk
AT andrewsgordone investigationoftheheatreleaserateandparticlegenerationduringfixedbedgasificationofsweetsorghumstalk
AT lihu investigationoftheheatreleaserateandparticlegenerationduringfixedbedgasificationofsweetsorghumstalk
AT phylaktouherodotosn investigationoftheheatreleaserateandparticlegenerationduringfixedbedgasificationofsweetsorghumstalk
AT mustafabintug investigationoftheheatreleaserateandparticlegenerationduringfixedbedgasificationofsweetsorghumstalk
AT matkiahmissh investigationoftheheatreleaserateandparticlegenerationduringfixedbedgasificationofsweetsorghumstalk