The exact number of conjugacy classes for 2 - generator p - groups of nilpotency class 2

An element x is conjugate to y in a group G if there exists an element g in G such that g-1xg = xg = y. The relation x is conjugate to y is an equivalence relation which induces a partition of G whose elements are called conjugacy classes. The general formula for the exact number of conjugacy classe...

Full description

Bibliographic Details
Main Author: Ahmad, Azhana
Format: Thesis
Language:English
Published: 2008
Subjects:
Online Access:http://eprints.utm.my/18721/1/AzhanaAhmadPFS2008.pdf
_version_ 1796855707201437696
author Ahmad, Azhana
author_facet Ahmad, Azhana
author_sort Ahmad, Azhana
collection ePrints
description An element x is conjugate to y in a group G if there exists an element g in G such that g-1xg = xg = y. The relation x is conjugate to y is an equivalence relation which induces a partition of G whose elements are called conjugacy classes. The general formula for the exact number of conjugacy classes for nilpotent groups does not exist. Researchers give only the lower bounds for the number of conjugacy classes of nilpotent groups. In this thesis, 2-generator p-groups of nilpotency class 2 (p an odd prime) are considered for their exact number of conjugacy classes. These groups have been classified by Bacon and Kappe in 1993. In 1999, Kappe, Visscher and Sarmin have corrected minor errors on the groups in the classification. Groups, Algorithms, and Programming (GAP) software is used in this research to gain insight into the structure of these groups. There are infinitely many of these groups which are partitioned into three types. For each type, there are infinitely many base groups. New structural results are found such that groups other than base groups are central extensions. As a result of this research, a general formula is derived for the exact number of conjugacy classes for each type of 2-generator p-groups of nilpotency class 2 (p an odd prime)
first_indexed 2024-03-05T18:32:31Z
format Thesis
id utm.eprints-18721
institution Universiti Teknologi Malaysia - ePrints
language English
last_indexed 2024-03-05T18:32:31Z
publishDate 2008
record_format dspace
spelling utm.eprints-187212018-10-14T07:23:47Z http://eprints.utm.my/18721/ The exact number of conjugacy classes for 2 - generator p - groups of nilpotency class 2 Ahmad, Azhana QA Mathematics An element x is conjugate to y in a group G if there exists an element g in G such that g-1xg = xg = y. The relation x is conjugate to y is an equivalence relation which induces a partition of G whose elements are called conjugacy classes. The general formula for the exact number of conjugacy classes for nilpotent groups does not exist. Researchers give only the lower bounds for the number of conjugacy classes of nilpotent groups. In this thesis, 2-generator p-groups of nilpotency class 2 (p an odd prime) are considered for their exact number of conjugacy classes. These groups have been classified by Bacon and Kappe in 1993. In 1999, Kappe, Visscher and Sarmin have corrected minor errors on the groups in the classification. Groups, Algorithms, and Programming (GAP) software is used in this research to gain insight into the structure of these groups. There are infinitely many of these groups which are partitioned into three types. For each type, there are infinitely many base groups. New structural results are found such that groups other than base groups are central extensions. As a result of this research, a general formula is derived for the exact number of conjugacy classes for each type of 2-generator p-groups of nilpotency class 2 (p an odd prime) 2008-09 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/18721/1/AzhanaAhmadPFS2008.pdf Ahmad, Azhana (2008) The exact number of conjugacy classes for 2 - generator p - groups of nilpotency class 2. PhD thesis, Universiti Teknologi Malaysia, Fakulti Sains.
spellingShingle QA Mathematics
Ahmad, Azhana
The exact number of conjugacy classes for 2 - generator p - groups of nilpotency class 2
title The exact number of conjugacy classes for 2 - generator p - groups of nilpotency class 2
title_full The exact number of conjugacy classes for 2 - generator p - groups of nilpotency class 2
title_fullStr The exact number of conjugacy classes for 2 - generator p - groups of nilpotency class 2
title_full_unstemmed The exact number of conjugacy classes for 2 - generator p - groups of nilpotency class 2
title_short The exact number of conjugacy classes for 2 - generator p - groups of nilpotency class 2
title_sort exact number of conjugacy classes for 2 generator p groups of nilpotency class 2
topic QA Mathematics
url http://eprints.utm.my/18721/1/AzhanaAhmadPFS2008.pdf
work_keys_str_mv AT ahmadazhana theexactnumberofconjugacyclassesfor2generatorpgroupsofnilpotencyclass2
AT ahmadazhana exactnumberofconjugacyclassesfor2generatorpgroupsofnilpotencyclass2