Spectrum slicing of a broadband light source

Since the inception of optical fiber communication in 1974, their transmission capacity has experienced a tremendous increase in the years after. Several technology advances spurred its growth. But its use was kept to long haul applications like intercity links and international links, because of it...

Full description

Bibliographic Details
Main Author: Mohamed Shabeer, Mohamed Shabeer
Format: Thesis
Language:English
Published: 2006
Subjects:
Online Access:http://eprints.utm.my/2356/1/MohamedShabeerMFKE2006.pdf
_version_ 1825909229628686336
author Mohamed Shabeer, Mohamed Shabeer
author_facet Mohamed Shabeer, Mohamed Shabeer
author_sort Mohamed Shabeer, Mohamed Shabeer
collection ePrints
description Since the inception of optical fiber communication in 1974, their transmission capacity has experienced a tremendous increase in the years after. Several technology advances spurred its growth. But its use was kept to long haul applications like intercity links and international links, because of its initial capital cost. The use of Wavelength Division Multiplexing offered a further boost in fiber transmission capacity. The basis of WDM was to use multiple sources operating at slightly different wavelengths to transmit several independent information streams over the fiber. Laser diodes were the traditionally used sources because of its narrow spectral width which in turn reduces the losses and gives out light with more power which is used to carry data over a long range. But, in today’s era where data rate is of more importance, immaterial of whether it is long or short haul, a technology was required which will make the short haul communication using optics, cheaper and affordable. Thus Light Emitting Diode was forced to play the role of light source instead of the laser. But since LED is having a very broad spectrum, most of its power would be wasted. So a technique called Spectral Slicing was brought up to nullify this aspect of LED so as to be useful in WDM systems. By using LED the cost of the system will also be kept low. This work here, demonstrates the spectral slicing technique which can be used in WDM systems. The slicing component used here is a Tunable Band-pass Filter. The output power received using this method was compared with another method which was done using Arrayed Waveguide Grating (AWG) and also with a mathematical model. Power budget analysis is done where by, the probable link distance that a system using spectral slicing technique by tunable band-pass filters, can cover is found to be about 15-30 km. Also, a cost based analysis is done, using the common market prices of the major components, to prove that this technique reduces the cost to an extend that the need for lasers is never inevitable in the case of short haul communications
first_indexed 2024-03-05T17:59:03Z
format Thesis
id utm.eprints-2356
institution Universiti Teknologi Malaysia - ePrints
language English
last_indexed 2024-03-05T17:59:03Z
publishDate 2006
record_format dspace
spelling utm.eprints-23562018-06-25T00:40:41Z http://eprints.utm.my/2356/ Spectrum slicing of a broadband light source Mohamed Shabeer, Mohamed Shabeer TK Electrical engineering. Electronics Nuclear engineering Since the inception of optical fiber communication in 1974, their transmission capacity has experienced a tremendous increase in the years after. Several technology advances spurred its growth. But its use was kept to long haul applications like intercity links and international links, because of its initial capital cost. The use of Wavelength Division Multiplexing offered a further boost in fiber transmission capacity. The basis of WDM was to use multiple sources operating at slightly different wavelengths to transmit several independent information streams over the fiber. Laser diodes were the traditionally used sources because of its narrow spectral width which in turn reduces the losses and gives out light with more power which is used to carry data over a long range. But, in today’s era where data rate is of more importance, immaterial of whether it is long or short haul, a technology was required which will make the short haul communication using optics, cheaper and affordable. Thus Light Emitting Diode was forced to play the role of light source instead of the laser. But since LED is having a very broad spectrum, most of its power would be wasted. So a technique called Spectral Slicing was brought up to nullify this aspect of LED so as to be useful in WDM systems. By using LED the cost of the system will also be kept low. This work here, demonstrates the spectral slicing technique which can be used in WDM systems. The slicing component used here is a Tunable Band-pass Filter. The output power received using this method was compared with another method which was done using Arrayed Waveguide Grating (AWG) and also with a mathematical model. Power budget analysis is done where by, the probable link distance that a system using spectral slicing technique by tunable band-pass filters, can cover is found to be about 15-30 km. Also, a cost based analysis is done, using the common market prices of the major components, to prove that this technique reduces the cost to an extend that the need for lasers is never inevitable in the case of short haul communications 2006-04 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/2356/1/MohamedShabeerMFKE2006.pdf Mohamed Shabeer, Mohamed Shabeer (2006) Spectrum slicing of a broadband light source. Masters thesis, Universiti Teknologi Malaysia, Faculty of Electrical Engineering.
spellingShingle TK Electrical engineering. Electronics Nuclear engineering
Mohamed Shabeer, Mohamed Shabeer
Spectrum slicing of a broadband light source
title Spectrum slicing of a broadband light source
title_full Spectrum slicing of a broadband light source
title_fullStr Spectrum slicing of a broadband light source
title_full_unstemmed Spectrum slicing of a broadband light source
title_short Spectrum slicing of a broadband light source
title_sort spectrum slicing of a broadband light source
topic TK Electrical engineering. Electronics Nuclear engineering
url http://eprints.utm.my/2356/1/MohamedShabeerMFKE2006.pdf
work_keys_str_mv AT mohamedshabeermohamedshabeer spectrumslicingofabroadbandlightsource