Design and fabrication of a novel spinning fluidised bed

Existing vertical spinning fluidised bed (SFB) have several drawbacks, such as non-uniform radial and axial bed fluidisation, feeding and ash accumulation problems. The purpose of this research, therefore is to develop a prototype of the horizontal SFB combustor capable of overcoming these drawbacks...

Full description

Bibliographic Details
Main Authors: Taib, Mohamad Rozainee, Ngo, Saik Peng, Chong , Yee Hwang, Lee, Boon Pin
Format: Monograph
Language:English
Published: Universiti Teknologi Malaysia 2002
Subjects:
Online Access:http://eprints.utm.my/2747/1/72225.pdf
_version_ 1825909280684900352
author Taib, Mohamad Rozainee
Ngo, Saik Peng
Chong , Yee Hwang
Lee, Boon Pin
author_facet Taib, Mohamad Rozainee
Ngo, Saik Peng
Chong , Yee Hwang
Lee, Boon Pin
author_sort Taib, Mohamad Rozainee
collection ePrints
description Existing vertical spinning fluidised bed (SFB) have several drawbacks, such as non-uniform radial and axial bed fluidisation, feeding and ash accumulation problems. The purpose of this research, therefore is to develop a prototype of the horizontal SFB combustor capable of overcoming these drawbacks. The scopes of the research include engineering design of the prototype, computational fluid dynamics (CFD) modelling and set-up/commissioning of the developed prototype. Under this research, a prototype of the horizontal SFB has been successfully developed and is able to overcome the inherent weakness in vertical SFB. The innovative secondary chamber provides more freeboard for more complete combustion and acts as particulate control device. The prototype is suitable for burning low-density materials (rice husk, fibrous materials), which are difficult to be burnt in conventional fluidised bed by imparting a higher centrifugal force. There is also no limit to the amount of air throughput and combustion is only limited by the kinetics in which each different type of waste burns. Results from the CFD modelling narrowed down the parameters to be tested on the SFB in future experimental works, as well as providing design improvements on the current SFB design. Due to its compactness and versatility in burning a wide range of waste, the SFB prototype has the potential to be utilised as small-scale on-site waste incineration facility and high-efficiency gas burner for high-loading waste gas streams in chemical plants or refineries. The whole system is mountable to a truck and can be transported to waste sources such as rice mills, sawmills, wastewater treatment plants to incinerate waste. The full performance on the developed SFB during combustion of various types of wastes is outside the scope of the current research and therefore, is subjected to future experimental works.
first_indexed 2024-03-05T17:59:48Z
format Monograph
id utm.eprints-2747
institution Universiti Teknologi Malaysia - ePrints
language English
last_indexed 2024-03-05T17:59:48Z
publishDate 2002
publisher Universiti Teknologi Malaysia
record_format dspace
spelling utm.eprints-27472010-06-01T03:04:51Z http://eprints.utm.my/2747/ Design and fabrication of a novel spinning fluidised bed Taib, Mohamad Rozainee Ngo, Saik Peng Chong , Yee Hwang Lee, Boon Pin TP Chemical technology Existing vertical spinning fluidised bed (SFB) have several drawbacks, such as non-uniform radial and axial bed fluidisation, feeding and ash accumulation problems. The purpose of this research, therefore is to develop a prototype of the horizontal SFB combustor capable of overcoming these drawbacks. The scopes of the research include engineering design of the prototype, computational fluid dynamics (CFD) modelling and set-up/commissioning of the developed prototype. Under this research, a prototype of the horizontal SFB has been successfully developed and is able to overcome the inherent weakness in vertical SFB. The innovative secondary chamber provides more freeboard for more complete combustion and acts as particulate control device. The prototype is suitable for burning low-density materials (rice husk, fibrous materials), which are difficult to be burnt in conventional fluidised bed by imparting a higher centrifugal force. There is also no limit to the amount of air throughput and combustion is only limited by the kinetics in which each different type of waste burns. Results from the CFD modelling narrowed down the parameters to be tested on the SFB in future experimental works, as well as providing design improvements on the current SFB design. Due to its compactness and versatility in burning a wide range of waste, the SFB prototype has the potential to be utilised as small-scale on-site waste incineration facility and high-efficiency gas burner for high-loading waste gas streams in chemical plants or refineries. The whole system is mountable to a truck and can be transported to waste sources such as rice mills, sawmills, wastewater treatment plants to incinerate waste. The full performance on the developed SFB during combustion of various types of wastes is outside the scope of the current research and therefore, is subjected to future experimental works. Universiti Teknologi Malaysia 2002-12-31 Monograph NonPeerReviewed application/pdf en http://eprints.utm.my/2747/1/72225.pdf Taib, Mohamad Rozainee and Ngo, Saik Peng and Chong , Yee Hwang and Lee, Boon Pin (2002) Design and fabrication of a novel spinning fluidised bed. Project Report. Universiti Teknologi Malaysia. (Unpublished)
spellingShingle TP Chemical technology
Taib, Mohamad Rozainee
Ngo, Saik Peng
Chong , Yee Hwang
Lee, Boon Pin
Design and fabrication of a novel spinning fluidised bed
title Design and fabrication of a novel spinning fluidised bed
title_full Design and fabrication of a novel spinning fluidised bed
title_fullStr Design and fabrication of a novel spinning fluidised bed
title_full_unstemmed Design and fabrication of a novel spinning fluidised bed
title_short Design and fabrication of a novel spinning fluidised bed
title_sort design and fabrication of a novel spinning fluidised bed
topic TP Chemical technology
url http://eprints.utm.my/2747/1/72225.pdf
work_keys_str_mv AT taibmohamadrozainee designandfabricationofanovelspinningfluidisedbed
AT ngosaikpeng designandfabricationofanovelspinningfluidisedbed
AT chongyeehwang designandfabricationofanovelspinningfluidisedbed
AT leeboonpin designandfabricationofanovelspinningfluidisedbed