Modeling of human motion through motion captured data using non-linear identification

The importance of estimating human motion analysis can be illustrated by numerous applications such as performance measurement for human factors engineering, posture and gait analysis for training athletes and physically challenged persons, animation of the human body, hands and face, automatic anno...

Full description

Bibliographic Details
Main Author: Che Omar, Muhammad Budiman
Format: Thesis
Language:English
Published: 2007
Subjects:
Online Access:http://eprints.utm.my/36571/1/MuhammadBudimanMFKM2007.pdf
_version_ 1796857551424323584
author Che Omar, Muhammad Budiman
author_facet Che Omar, Muhammad Budiman
author_sort Che Omar, Muhammad Budiman
collection ePrints
description The importance of estimating human motion analysis can be illustrated by numerous applications such as performance measurement for human factors engineering, posture and gait analysis for training athletes and physically challenged persons, animation of the human body, hands and face, automatic annotation of human activities in video databases, control in video games and virtual reality or teleoperation of anthropometric robots. Image processing technique from motion captured images is an accurate and cost effective method to give a set of data that defines the location of specified limb at every sequence of human motion. From this set of data, system identification was done to model the human motion. This project is a study on how performance of an identified model is influenced by different types of model representation whether it is a linear model or non-linear model and a single variable model or multi variable model. Two types of parameter estimator was used which were least square and recursive least square. The study also included the effects of different number of lags on the model. The objective is to formulate a predictive model to analyze human motion. Simulation studies were done on this model representation and compared with actual human motion. Several model validation techniques were done to validate the identified models. In this study, multivariable non-linear model is a good human motion representative. The model accuracy increases as the degree of non-linearity and number of lags are increased but it makes the model become more complex.
first_indexed 2024-03-05T18:59:28Z
format Thesis
id utm.eprints-36571
institution Universiti Teknologi Malaysia - ePrints
language English
last_indexed 2024-03-05T18:59:28Z
publishDate 2007
record_format dspace
spelling utm.eprints-365712018-07-28T06:26:19Z http://eprints.utm.my/36571/ Modeling of human motion through motion captured data using non-linear identification Che Omar, Muhammad Budiman TJ Mechanical engineering and machinery The importance of estimating human motion analysis can be illustrated by numerous applications such as performance measurement for human factors engineering, posture and gait analysis for training athletes and physically challenged persons, animation of the human body, hands and face, automatic annotation of human activities in video databases, control in video games and virtual reality or teleoperation of anthropometric robots. Image processing technique from motion captured images is an accurate and cost effective method to give a set of data that defines the location of specified limb at every sequence of human motion. From this set of data, system identification was done to model the human motion. This project is a study on how performance of an identified model is influenced by different types of model representation whether it is a linear model or non-linear model and a single variable model or multi variable model. Two types of parameter estimator was used which were least square and recursive least square. The study also included the effects of different number of lags on the model. The objective is to formulate a predictive model to analyze human motion. Simulation studies were done on this model representation and compared with actual human motion. Several model validation techniques were done to validate the identified models. In this study, multivariable non-linear model is a good human motion representative. The model accuracy increases as the degree of non-linearity and number of lags are increased but it makes the model become more complex. 2007-12 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/36571/1/MuhammadBudimanMFKM2007.pdf Che Omar, Muhammad Budiman (2007) Modeling of human motion through motion captured data using non-linear identification. Masters thesis, Universiti Teknologi Malaysia, Faculty of Mechanical Engineering. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:69242
spellingShingle TJ Mechanical engineering and machinery
Che Omar, Muhammad Budiman
Modeling of human motion through motion captured data using non-linear identification
title Modeling of human motion through motion captured data using non-linear identification
title_full Modeling of human motion through motion captured data using non-linear identification
title_fullStr Modeling of human motion through motion captured data using non-linear identification
title_full_unstemmed Modeling of human motion through motion captured data using non-linear identification
title_short Modeling of human motion through motion captured data using non-linear identification
title_sort modeling of human motion through motion captured data using non linear identification
topic TJ Mechanical engineering and machinery
url http://eprints.utm.my/36571/1/MuhammadBudimanMFKM2007.pdf
work_keys_str_mv AT cheomarmuhammadbudiman modelingofhumanmotionthroughmotioncaptureddatausingnonlinearidentification