Characterization of the catabolic pathway for a phenylcoumaran-type lignin-derived biaryl in Sphingobium sp strain SYK-6

Sphingobium sp. strain SYK-6 is capable of degrading various lignin-derived biaryls. We determined the catabolic pathway of a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA) in SYK-6, and identified some of the DCA catabolism genes. In SYK-6 cells, the alcohol group of DCA was oxidize...

Full description

Bibliographic Details
Main Authors: Takahashi, Kenji, Kamimura, Naofumi, Hishiyama, Shojiro, Hara, Hirofumi, Kasai, Daisuke, Katayama, Yoshihiro, Fukuda, Masao, Kajita, Shinya, Masai, Eiji
Format: Article
Published: Kluwer Academic Publishers 2014
Subjects:
Description
Summary:Sphingobium sp. strain SYK-6 is capable of degrading various lignin-derived biaryls. We determined the catabolic pathway of a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA) in SYK-6, and identified some of the DCA catabolism genes. In SYK-6 cells, the alcohol group of DCA was oxidized to the carboxyl group, first at the B-ring side chain and then at the A-ring side chain. The resultant metabolite was degraded to 5-formylferulate and vanillin through the decarboxylation and the Cα-Cβ cleavage of the A-ring side chain. Based on the DCA catabolic pathway, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) genes are thought to be involved in the conversion of DCA into an aldehyde intermediate (DCA-L) and the conversion of DCA-L into a carboxylic acid intermediate (DCA-C), respectively. SLG_05620 and SLG_24930, which belong to quinohemoprotein ADH and aryl ADH, respectively, were isolated as the genes responsible for the oxidation of DCA. In addition to these genes, multiple genes similar to SLG_05620 and SLG_24930 were found to confer DCA oxidation activities on Escherichia coli cells. In order to identify the DCA-L dehydrogenase genes, the DCA-L oxidation activities of the SYK-6 gene products of putative twenty-one ALDH genes were examined. Significant activities were observed in the four ALDH gene products, including the SLG_27910 product, which showed the highest activity. The disruption of SLG_27910 caused a decreased conversion of DCA-L, suggesting that SLG_27910 plays an important role in the DCA-L oxidation. In conclusion, no specific gene seems to be solely responsible for the conversion of DCA and DCA-L, however, the multiple genes encoding quinohemoprotein ADH and aryl ADH genes, and four ALDH genes are probably involved in the conversion processes.