Estimation parameters using bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers

This study presents an improvement to robust ridge regression estimator. We proposed two methods Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) based on ridge least trimmed squares RLTS and ridge least absolute value (RLAV) respectively. We compared thes...

Full description

Bibliographic Details
Main Authors: Kafi, Dano Pati, Adnan, Robiah, Rasheed, Abdulkadir Bello, Md. Jedi, Muhamad Alias
Format: Conference or Workshop Item
Language:English
Published: 2015
Subjects:
Online Access:http://eprints.utm.my/61313/1/RobiahAdnan2015_EstimationParametersUsingBisquareWeighted.pdf
_version_ 1796861078811967488
author Kafi, Dano Pati
Adnan, Robiah
Rasheed, Abdulkadir Bello
Md. Jedi, Muhamad Alias
author_facet Kafi, Dano Pati
Adnan, Robiah
Rasheed, Abdulkadir Bello
Md. Jedi, Muhamad Alias
author_sort Kafi, Dano Pati
collection ePrints
description This study presents an improvement to robust ridge regression estimator. We proposed two methods Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) based on ridge least trimmed squares RLTS and ridge least absolute value (RLAV) respectively. We compared these methods with existing estimators, namely ordinary least squares (OLS) and Bisquare ridge regression (BRID) using three criteria: Bias, Root Mean Square Error (RMSE) and Standard Error (SE) to estimate the parameters coe±cients. The results of Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) are compared with existing methods using real data and simulation study. The empirical evidence shows that the results obtain from the BRLTS are the best among the three estimators followed by BRLAV with the least value of the RMSE for the diÆerent disturbance distributions and degrees of multicollinearity.
first_indexed 2024-03-05T19:50:56Z
format Conference or Workshop Item
id utm.eprints-61313
institution Universiti Teknologi Malaysia - ePrints
language English
last_indexed 2024-03-05T19:50:56Z
publishDate 2015
record_format dspace
spelling utm.eprints-613132017-07-31T07:03:03Z http://eprints.utm.my/61313/ Estimation parameters using bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers Kafi, Dano Pati Adnan, Robiah Rasheed, Abdulkadir Bello Md. Jedi, Muhamad Alias QA Mathematics This study presents an improvement to robust ridge regression estimator. We proposed two methods Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) based on ridge least trimmed squares RLTS and ridge least absolute value (RLAV) respectively. We compared these methods with existing estimators, namely ordinary least squares (OLS) and Bisquare ridge regression (BRID) using three criteria: Bias, Root Mean Square Error (RMSE) and Standard Error (SE) to estimate the parameters coe±cients. The results of Bisquare ridge least trimmed squares (BRLTS) and Bisquare ridge least absolute value (BRLAV) are compared with existing methods using real data and simulation study. The empirical evidence shows that the results obtain from the BRLTS are the best among the three estimators followed by BRLAV with the least value of the RMSE for the diÆerent disturbance distributions and degrees of multicollinearity. 2015 Conference or Workshop Item PeerReviewed application/pdf en http://eprints.utm.my/61313/1/RobiahAdnan2015_EstimationParametersUsingBisquareWeighted.pdf Kafi, Dano Pati and Adnan, Robiah and Rasheed, Abdulkadir Bello and Md. Jedi, Muhamad Alias (2015) Estimation parameters using bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers. In: Simposium Kebangsaan Sains Matematik ke-23, 24-26 Nov, 2015, Johor Bahru, Johor.
spellingShingle QA Mathematics
Kafi, Dano Pati
Adnan, Robiah
Rasheed, Abdulkadir Bello
Md. Jedi, Muhamad Alias
Estimation parameters using bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers
title Estimation parameters using bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers
title_full Estimation parameters using bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers
title_fullStr Estimation parameters using bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers
title_full_unstemmed Estimation parameters using bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers
title_short Estimation parameters using bisquare weighted robust ridge regression BRLTS estimator in the presence of multicollinearity and outliers
title_sort estimation parameters using bisquare weighted robust ridge regression brlts estimator in the presence of multicollinearity and outliers
topic QA Mathematics
url http://eprints.utm.my/61313/1/RobiahAdnan2015_EstimationParametersUsingBisquareWeighted.pdf
work_keys_str_mv AT kafidanopati estimationparametersusingbisquareweightedrobustridgeregressionbrltsestimatorinthepresenceofmulticollinearityandoutliers
AT adnanrobiah estimationparametersusingbisquareweightedrobustridgeregressionbrltsestimatorinthepresenceofmulticollinearityandoutliers
AT rasheedabdulkadirbello estimationparametersusingbisquareweightedrobustridgeregressionbrltsestimatorinthepresenceofmulticollinearityandoutliers
AT mdjedimuhamadalias estimationparametersusingbisquareweightedrobustridgeregressionbrltsestimatorinthepresenceofmulticollinearityandoutliers