Iris code matching using adaptive Hamming distance

The most popular metric distance used in iris code matching is Hamming distance. In this paper, we improve the performance of iris code matching stage by applying adaptive Hamming distance. Proposed method works with Hamming subsets with adaptive length. Based on density of masked bits in the Hammin...

Full description

Bibliographic Details
Main Authors: Dehkordi, A. B., Abu-Bakar, S. A. R.
Format: Conference or Workshop Item
Published: Institute of Electrical and Electronics Engineers Inc. 2016
Subjects:
Description
Summary:The most popular metric distance used in iris code matching is Hamming distance. In this paper, we improve the performance of iris code matching stage by applying adaptive Hamming distance. Proposed method works with Hamming subsets with adaptive length. Based on density of masked bits in the Hamming subset, each subset is able to expand and adjoin to the right or left neighbouring bits. The adaptive behaviour of Hamming subsets increases the accuracy of Hamming distance computation and improves the performance of iris code matching. Results of applying proposed method on Chinese Academy of Science Institute of Automation, CASIA V3.3 shows performance of 99.96% and false rejection rate 0.06.