The nonabelian tensor square of a Bieberbach group with symmetric point group of order six

Bieberbach groups are torsion free crystallographic groups. In this paper, our focus is given on the Bieberbach groups with symmetric point group of order six. The nonabelian tensor square of a group is a well known homological functor which can reveal the properties of a group. With the method deve...

Full description

Bibliographic Details
Main Authors: Ting, T. Y., Idrus, N. M., Masri, R., Wan Mohd. Fauzia, W. N. F., Sarmin, N. H., Mat Hassim, H. I.
Format: Article
Language:English
Published: Penerbit UTM Press 2016
Subjects:
Online Access:http://eprints.utm.my/74269/1/NorHanizaSarmin2016_TheNonabelianTensorSquare.pdf
_version_ 1796862185154019328
author Ting, T. Y.
Idrus, N. M.
Masri, R.
Wan Mohd. Fauzia, W. N. F.
Sarmin, N. H.
Mat Hassim, H. I.
author_facet Ting, T. Y.
Idrus, N. M.
Masri, R.
Wan Mohd. Fauzia, W. N. F.
Sarmin, N. H.
Mat Hassim, H. I.
author_sort Ting, T. Y.
collection ePrints
description Bieberbach groups are torsion free crystallographic groups. In this paper, our focus is given on the Bieberbach groups with symmetric point group of order six. The nonabelian tensor square of a group is a well known homological functor which can reveal the properties of a group. With the method developed for polycyclic groups, the nonabelian tensor square of one of the Bieberbach groups of dimension four with symmetric point group of order six is computed. The nonabelian tensor square of this group is found to be not abelian and its presentation is constructed.
first_indexed 2024-03-05T20:07:44Z
format Article
id utm.eprints-74269
institution Universiti Teknologi Malaysia - ePrints
language English
last_indexed 2024-03-05T20:07:44Z
publishDate 2016
publisher Penerbit UTM Press
record_format dspace
spelling utm.eprints-742692017-11-22T12:07:40Z http://eprints.utm.my/74269/ The nonabelian tensor square of a Bieberbach group with symmetric point group of order six Ting, T. Y. Idrus, N. M. Masri, R. Wan Mohd. Fauzia, W. N. F. Sarmin, N. H. Mat Hassim, H. I. QA Mathematics Bieberbach groups are torsion free crystallographic groups. In this paper, our focus is given on the Bieberbach groups with symmetric point group of order six. The nonabelian tensor square of a group is a well known homological functor which can reveal the properties of a group. With the method developed for polycyclic groups, the nonabelian tensor square of one of the Bieberbach groups of dimension four with symmetric point group of order six is computed. The nonabelian tensor square of this group is found to be not abelian and its presentation is constructed. Penerbit UTM Press 2016 Article PeerReviewed application/pdf en http://eprints.utm.my/74269/1/NorHanizaSarmin2016_TheNonabelianTensorSquare.pdf Ting, T. Y. and Idrus, N. M. and Masri, R. and Wan Mohd. Fauzia, W. N. F. and Sarmin, N. H. and Mat Hassim, H. I. (2016) The nonabelian tensor square of a Bieberbach group with symmetric point group of order six. Jurnal Teknologi, 78 (1). pp. 189-193. ISSN 0127-9696 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84952319201&doi=10.11113%2fjt.v78.4385&partnerID=40&md5=5fcfacb2cc88bf659665e231b30afea5
spellingShingle QA Mathematics
Ting, T. Y.
Idrus, N. M.
Masri, R.
Wan Mohd. Fauzia, W. N. F.
Sarmin, N. H.
Mat Hassim, H. I.
The nonabelian tensor square of a Bieberbach group with symmetric point group of order six
title The nonabelian tensor square of a Bieberbach group with symmetric point group of order six
title_full The nonabelian tensor square of a Bieberbach group with symmetric point group of order six
title_fullStr The nonabelian tensor square of a Bieberbach group with symmetric point group of order six
title_full_unstemmed The nonabelian tensor square of a Bieberbach group with symmetric point group of order six
title_short The nonabelian tensor square of a Bieberbach group with symmetric point group of order six
title_sort nonabelian tensor square of a bieberbach group with symmetric point group of order six
topic QA Mathematics
url http://eprints.utm.my/74269/1/NorHanizaSarmin2016_TheNonabelianTensorSquare.pdf
work_keys_str_mv AT tingty thenonabeliantensorsquareofabieberbachgroupwithsymmetricpointgroupofordersix
AT idrusnm thenonabeliantensorsquareofabieberbachgroupwithsymmetricpointgroupofordersix
AT masrir thenonabeliantensorsquareofabieberbachgroupwithsymmetricpointgroupofordersix
AT wanmohdfauziawnf thenonabeliantensorsquareofabieberbachgroupwithsymmetricpointgroupofordersix
AT sarminnh thenonabeliantensorsquareofabieberbachgroupwithsymmetricpointgroupofordersix
AT mathassimhi thenonabeliantensorsquareofabieberbachgroupwithsymmetricpointgroupofordersix
AT tingty nonabeliantensorsquareofabieberbachgroupwithsymmetricpointgroupofordersix
AT idrusnm nonabeliantensorsquareofabieberbachgroupwithsymmetricpointgroupofordersix
AT masrir nonabeliantensorsquareofabieberbachgroupwithsymmetricpointgroupofordersix
AT wanmohdfauziawnf nonabeliantensorsquareofabieberbachgroupwithsymmetricpointgroupofordersix
AT sarminnh nonabeliantensorsquareofabieberbachgroupwithsymmetricpointgroupofordersix
AT mathassimhi nonabeliantensorsquareofabieberbachgroupwithsymmetricpointgroupofordersix