To identify suspicious activity in anomaly detection based on soft computing
The Traditional intrusion detection systems (IDS) look for unusual or suspicious activity, such as patterns of network traffic that are likely indicators of unauthorized activity. However, normal operation often produces traffic that matches likely "attack signature", resulting in false al...
Main Authors: | , , , , |
---|---|
Format: | Conference or Workshop Item |
Published: |
2006
|
Subjects: |
_version_ | 1825910042322272256 |
---|---|
author | Chimphlee, Witcha Sap, M. Abdullah, Abdul Hanan Chimphlee, Siriporn Srinoy, Surat |
author_facet | Chimphlee, Witcha Sap, M. Abdullah, Abdul Hanan Chimphlee, Siriporn Srinoy, Surat |
author_sort | Chimphlee, Witcha |
collection | ePrints |
description | The Traditional intrusion detection systems (IDS) look for unusual or suspicious activity, such as patterns of network traffic that are likely indicators of unauthorized activity. However, normal operation often produces traffic that matches likely "attack signature", resulting in false alarms. In this paper we propose an intrusion detection method that proposes rough set based feature selection heuristics and using fuzzy c-means for clustering data. Rough set has to decrease the amount of data and get rid of redundancy. Fuzzy Clustering methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to increase accuracy detection rate for suspicious activity and signature detection. Empirical studies using the network security data set from the DARPA 1998 offline intrusion detection project (KDD 1999 Cup) show the feasibility of misuse and anomaly detection results. |
first_indexed | 2024-03-05T18:11:11Z |
format | Conference or Workshop Item |
id | utm.eprints-7454 |
institution | Universiti Teknologi Malaysia - ePrints |
last_indexed | 2024-03-05T18:11:11Z |
publishDate | 2006 |
record_format | dspace |
spelling | utm.eprints-74542017-08-30T01:35:24Z http://eprints.utm.my/7454/ To identify suspicious activity in anomaly detection based on soft computing Chimphlee, Witcha Sap, M. Abdullah, Abdul Hanan Chimphlee, Siriporn Srinoy, Surat QA75 Electronic computers. Computer science The Traditional intrusion detection systems (IDS) look for unusual or suspicious activity, such as patterns of network traffic that are likely indicators of unauthorized activity. However, normal operation often produces traffic that matches likely "attack signature", resulting in false alarms. In this paper we propose an intrusion detection method that proposes rough set based feature selection heuristics and using fuzzy c-means for clustering data. Rough set has to decrease the amount of data and get rid of redundancy. Fuzzy Clustering methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to increase accuracy detection rate for suspicious activity and signature detection. Empirical studies using the network security data set from the DARPA 1998 offline intrusion detection project (KDD 1999 Cup) show the feasibility of misuse and anomaly detection results. 2006 Conference or Workshop Item PeerReviewed Chimphlee, Witcha and Sap, M. and Abdullah, Abdul Hanan and Chimphlee, Siriporn and Srinoy, Surat (2006) To identify suspicious activity in anomaly detection based on soft computing. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, AIA 2006. |
spellingShingle | QA75 Electronic computers. Computer science Chimphlee, Witcha Sap, M. Abdullah, Abdul Hanan Chimphlee, Siriporn Srinoy, Surat To identify suspicious activity in anomaly detection based on soft computing |
title | To identify suspicious activity in anomaly detection based on soft computing |
title_full | To identify suspicious activity in anomaly detection based on soft computing |
title_fullStr | To identify suspicious activity in anomaly detection based on soft computing |
title_full_unstemmed | To identify suspicious activity in anomaly detection based on soft computing |
title_short | To identify suspicious activity in anomaly detection based on soft computing |
title_sort | to identify suspicious activity in anomaly detection based on soft computing |
topic | QA75 Electronic computers. Computer science |
work_keys_str_mv | AT chimphleewitcha toidentifysuspiciousactivityinanomalydetectionbasedonsoftcomputing AT sapm toidentifysuspiciousactivityinanomalydetectionbasedonsoftcomputing AT abdullahabdulhanan toidentifysuspiciousactivityinanomalydetectionbasedonsoftcomputing AT chimphleesiriporn toidentifysuspiciousactivityinanomalydetectionbasedonsoftcomputing AT srinoysurat toidentifysuspiciousactivityinanomalydetectionbasedonsoftcomputing |