Summary: | The paper presents some advanced high performance (HPC) and parallel computing (PC) methodologies for solving a large space complex problem involving the integrated difference research areas. About eight interdisciplinary problems will be accurately solved on multiple computers communicating over the local area network. The mathematical modeling and a large sparse simulation of the interdisciplinary effort involve the area of science, engineering, biomedical, nanotechnology, software engineering, agriculture, image processing and urban planning. The specific methodologies of PC software under consideration include PVM, MPI, LUNA, MDC, OpenMP, CUDA and LINDA integrated with COMSOL and C++/C. There are different communication models of parallel programming, thus some definitions of parallel processing, distributed processing and memory types are explained for understanding the main contribution of this paper. The matching between the methodology of PC and the large sparse application depends on the domain of solution, the dimension of the targeted area, computational and communication pattern, the architecture of distributed parallel computing systems (DPCS), the structure of computational complexity and communication cost. The originality of this paper lies in obtaining the complex numerical model dealing with a large scale partial differential equation (PDE), discretization of finite difference (FDM) or finite element (FEM) methods, numerical simulation, high-performance simulation and performance measurement. The simulation of PDE will perform by sequential and parallel algorithms to visualize the complex model in high-resolution quality. In the context of a mathematical model, various independent and dependent parameters present the complex and real phenomena of the interdisciplinary application. As a model executes, these parameters can be manipulated and changed. As an impact, some chemical or mechanical properties can be predicted based on the observation of parameter changes. The methodologies of parallel programs build on the client-server model, slave-master model and fragmented model. HPC of the communication model for solving the interdisciplinary problems above will be analyzed using a flow of the algorithm, numerical analysis and the comparison of parallel performance evaluations. In conclusion, the integration of HPC, communication model, PC software, performance and numerical analysis happens to be an important approach to fulfill the matching requirement and optimize the solution of complex interdisciplinary problems.
|