Coke-tolerant SiW20-Al/Zr10 catalyst for glycerol dehydration to acrolein

Glycerol dehydration to acrolein over a series of supported silicotungstic acid catalysts (SiWx-Al/Zry) was investigated. Characterization results showed that the final catalyst had high thermal stability, a large pore diameter, strong Lewis acidic sites, and a large specific surface area. X-ray pho...

Full description

Bibliographic Details
Main Authors: Talebian Kiakalaieh, A., Amin, N. A. S.
Format: Article
Published: Science Press 2017
Subjects:
Description
Summary:Glycerol dehydration to acrolein over a series of supported silicotungstic acid catalysts (SiWx-Al/Zry) was investigated. Characterization results showed that the final catalyst had high thermal stability, a large pore diameter, strong Lewis acidic sites, and a large specific surface area. X-ray photoelectron survey spectra clearly showed peaks attributable to W (W 4f = 35.8 eV), Al2O3 (Al 2p = 74.9 eV), and ZrO2 (Zr 3d = 182.8 eV). The highest acrolein selectivity achieved was 87.3% at 97% glycerol conversion over the SiW20-Al/Zr10 catalyst. The prepared catalysts were highly active and selective for acrolein formation even after 40 h because of the presence of high concentrations of Lewis acidic sites, which significantly reduced the amount of coke on the catalyst surface. Response surface methodology optimization showed that 87.7% acrolein selectivity at 97.0% glycerol conversion could be obtained under the following optimal reaction conditions: 0.5 wt% catalyst, reaction temperature 300 °C, and feed glycerol concentration 10 wt%. Evaluation of a mass-transfer-limited regime showed the absence of internal and external diffusions over pellets of diameter dP < 20 μm. These results show that glycerol dehydration over a strong Lewis acid catalyst is a promising method for acrolein production.