Integrated bridge health monitoring, evaluation and alert system using neuro-genetic hybrids

The bridge monitoring system which can analyze and predicts damage level of bridges due to earthquake loads is not yet available in Malaysia. Even though Malaysia is not an earthquake-prone country, earthquake from neighboring countries could affect the stability of the existing bridges in Malaysia....

Full description

Bibliographic Details
Main Author: Suryanita, Reni
Format: Thesis
Language:English
Published: 2014
Subjects:
Online Access:http://eprints.utm.my/77877/1/ReniSuryanitaPFKA2014.pdf
_version_ 1796862739663028224
author Suryanita, Reni
author_facet Suryanita, Reni
author_sort Suryanita, Reni
collection ePrints
description The bridge monitoring system which can analyze and predicts damage level of bridges due to earthquake loads is not yet available in Malaysia. Even though Malaysia is not an earthquake-prone country, earthquake from neighboring countries could affect the stability of the existing bridges in Malaysia. This study aims to analyze the performance of the bridge subject to earthquake loads and develop the intelligent monitoring system to predict the bridge health condition. The case study is the Second Penang Bridge Package-3B. The Intelligent System consists of the Artificial Neural Networks (ANN) and Genetic Algorithm (GA) hybrid model to obtain the optimum weight in the prediction system. The ANN inputs are 4633 data of the bridge response accelerations and displacements while the outputs are the bridge damage levels. Damage levels are obtained through nonlinear time history analyses using SAP2000. The damage level criterion is based on FEMA 356 focusing on Immediate Occupancy (IO), Life Safety (LS) and Collapse Prevention (CP) level. This intelligent monitoring system will display the alert warning system based on the prediction results with green for IO, yellow for LS and Red color for CP level. According to the results, the best performance of the displacement as data input in the prediction system is 2.2% higher than the acceleration data. This study is verified with pushover-static test to the mini-scale piers model in ratio 1:34. The first crack occurred on the base of Pier 1 when the lateral load is 9 kN, 12 kN for Pier 2 and 8 kN for Pier 4. Maximum displacement at Pier 1 is 10 mm while at Pier 2 and Pier 4 is 6 mm individually. The intelligent monitoring system can greatly assist the bridge authorities to identify the bridge health condition rapidly and plan the bridge maintenance routinely.
first_indexed 2024-03-05T20:16:11Z
format Thesis
id utm.eprints-77877
institution Universiti Teknologi Malaysia - ePrints
language English
last_indexed 2024-03-05T20:16:11Z
publishDate 2014
record_format dspace
spelling utm.eprints-778772018-07-18T04:11:03Z http://eprints.utm.my/77877/ Integrated bridge health monitoring, evaluation and alert system using neuro-genetic hybrids Suryanita, Reni TA Engineering (General). Civil engineering (General) The bridge monitoring system which can analyze and predicts damage level of bridges due to earthquake loads is not yet available in Malaysia. Even though Malaysia is not an earthquake-prone country, earthquake from neighboring countries could affect the stability of the existing bridges in Malaysia. This study aims to analyze the performance of the bridge subject to earthquake loads and develop the intelligent monitoring system to predict the bridge health condition. The case study is the Second Penang Bridge Package-3B. The Intelligent System consists of the Artificial Neural Networks (ANN) and Genetic Algorithm (GA) hybrid model to obtain the optimum weight in the prediction system. The ANN inputs are 4633 data of the bridge response accelerations and displacements while the outputs are the bridge damage levels. Damage levels are obtained through nonlinear time history analyses using SAP2000. The damage level criterion is based on FEMA 356 focusing on Immediate Occupancy (IO), Life Safety (LS) and Collapse Prevention (CP) level. This intelligent monitoring system will display the alert warning system based on the prediction results with green for IO, yellow for LS and Red color for CP level. According to the results, the best performance of the displacement as data input in the prediction system is 2.2% higher than the acceleration data. This study is verified with pushover-static test to the mini-scale piers model in ratio 1:34. The first crack occurred on the base of Pier 1 when the lateral load is 9 kN, 12 kN for Pier 2 and 8 kN for Pier 4. Maximum displacement at Pier 1 is 10 mm while at Pier 2 and Pier 4 is 6 mm individually. The intelligent monitoring system can greatly assist the bridge authorities to identify the bridge health condition rapidly and plan the bridge maintenance routinely. 2014-08 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/77877/1/ReniSuryanitaPFKA2014.pdf Suryanita, Reni (2014) Integrated bridge health monitoring, evaluation and alert system using neuro-genetic hybrids. PhD thesis, Universiti Teknologi Malaysia, Faculty of Civil Engineering. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:98564
spellingShingle TA Engineering (General). Civil engineering (General)
Suryanita, Reni
Integrated bridge health monitoring, evaluation and alert system using neuro-genetic hybrids
title Integrated bridge health monitoring, evaluation and alert system using neuro-genetic hybrids
title_full Integrated bridge health monitoring, evaluation and alert system using neuro-genetic hybrids
title_fullStr Integrated bridge health monitoring, evaluation and alert system using neuro-genetic hybrids
title_full_unstemmed Integrated bridge health monitoring, evaluation and alert system using neuro-genetic hybrids
title_short Integrated bridge health monitoring, evaluation and alert system using neuro-genetic hybrids
title_sort integrated bridge health monitoring evaluation and alert system using neuro genetic hybrids
topic TA Engineering (General). Civil engineering (General)
url http://eprints.utm.my/77877/1/ReniSuryanitaPFKA2014.pdf
work_keys_str_mv AT suryanitareni integratedbridgehealthmonitoringevaluationandalertsystemusingneurogenetichybrids