Irreducible representations of some finite groups and galois stability of integral representations

Representation theory is a branch of mathematics that studies properties of abstract groups via their representations as linear transformations of vector spaces. A representation makes an abstract algebraic object more concrete by describing its elements by matrices and the algebraic operations in t...

Full description

Bibliographic Details
Main Author: Yahya, Zainab
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:http://eprints.utm.my/77969/1/ZainabYahyaPFS2016.pdf
_version_ 1796862758043516928
author Yahya, Zainab
author_facet Yahya, Zainab
author_sort Yahya, Zainab
collection ePrints
description Representation theory is a branch of mathematics that studies properties of abstract groups via their representations as linear transformations of vector spaces. A representation makes an abstract algebraic object more concrete by describing its elements by matrices and the algebraic operations in terms of matrix addition and matrix multiplication. In this research, representations of certain finite groups are presented. The aims of this research are to find the matrix representations of dihedral groups, irreducible representations of dihedral groups and to relate the representations obtained with their isomorphic point groups. For these purposes, some theorems presented by previous researches on the representations of groups have been used. The fact that isomorphic groups have the same properties has also been applied in this research. Another part of this research is to explore on the representations of finite groups over algebraic number fields and their orders under field extension. Thus, this research also aims to prove the existence of abelian Galois stable subgroups under certain restriction of field extensions. The concept of generalized permutation modules has been used to determine the structure of the groups and their realization fields. Matrix representations of dihedral groups of degree six and the irreducible representations of all point groups which are isomorphic to the dihedral groups have been constructed. The existence of abelian Galois stable subgroups under certain restriction of field extensions have also been proven in this research.
first_indexed 2024-03-05T20:16:27Z
format Thesis
id utm.eprints-77969
institution Universiti Teknologi Malaysia - ePrints
language English
last_indexed 2024-03-05T20:16:27Z
publishDate 2016
record_format dspace
spelling utm.eprints-779692018-07-18T07:38:25Z http://eprints.utm.my/77969/ Irreducible representations of some finite groups and galois stability of integral representations Yahya, Zainab QA Mathematics Representation theory is a branch of mathematics that studies properties of abstract groups via their representations as linear transformations of vector spaces. A representation makes an abstract algebraic object more concrete by describing its elements by matrices and the algebraic operations in terms of matrix addition and matrix multiplication. In this research, representations of certain finite groups are presented. The aims of this research are to find the matrix representations of dihedral groups, irreducible representations of dihedral groups and to relate the representations obtained with their isomorphic point groups. For these purposes, some theorems presented by previous researches on the representations of groups have been used. The fact that isomorphic groups have the same properties has also been applied in this research. Another part of this research is to explore on the representations of finite groups over algebraic number fields and their orders under field extension. Thus, this research also aims to prove the existence of abelian Galois stable subgroups under certain restriction of field extensions. The concept of generalized permutation modules has been used to determine the structure of the groups and their realization fields. Matrix representations of dihedral groups of degree six and the irreducible representations of all point groups which are isomorphic to the dihedral groups have been constructed. The existence of abelian Galois stable subgroups under certain restriction of field extensions have also been proven in this research. 2016-02 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/77969/1/ZainabYahyaPFS2016.pdf Yahya, Zainab (2016) Irreducible representations of some finite groups and galois stability of integral representations. PhD thesis, Universiti Teknologi Malaysia, Faculty of Science. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:97579
spellingShingle QA Mathematics
Yahya, Zainab
Irreducible representations of some finite groups and galois stability of integral representations
title Irreducible representations of some finite groups and galois stability of integral representations
title_full Irreducible representations of some finite groups and galois stability of integral representations
title_fullStr Irreducible representations of some finite groups and galois stability of integral representations
title_full_unstemmed Irreducible representations of some finite groups and galois stability of integral representations
title_short Irreducible representations of some finite groups and galois stability of integral representations
title_sort irreducible representations of some finite groups and galois stability of integral representations
topic QA Mathematics
url http://eprints.utm.my/77969/1/ZainabYahyaPFS2016.pdf
work_keys_str_mv AT yahyazainab irreduciblerepresentationsofsomefinitegroupsandgaloisstabilityofintegralrepresentations