Biogranules containing photosynthetic bacteria for carbon dioxide reduction in palm oil mill effluent treatment

Presently global warming is the most highlighted subjects in environmental issues which is related to greenhouse gases (GHG) emissions especially carbon dioxide (CO2). In Malaysia, one of the major sources of GHG is from industrial wastewater treatment such as ponding system to treat palm oil mill e...

Full description

Bibliographic Details
Main Author: Mohamed Najib, Mohamed Zuhaili
Format: Thesis
Language:English
Published: 2017
Subjects:
Online Access:http://eprints.utm.my/79055/1/MohamedZuhailiMohamedPFKA2017.pdf
_version_ 1796862972356722688
author Mohamed Najib, Mohamed Zuhaili
author_facet Mohamed Najib, Mohamed Zuhaili
author_sort Mohamed Najib, Mohamed Zuhaili
collection ePrints
description Presently global warming is the most highlighted subjects in environmental issues which is related to greenhouse gases (GHG) emissions especially carbon dioxide (CO2). In Malaysia, one of the major sources of GHG is from industrial wastewater treatment such as ponding system to treat palm oil mill effluent (POME) where the accumulation of these gases will contribute to the greenhouse effect causing global warming. Since photosynthetic process offers the most effective and natural way of sequestering CO2, biogranules containing photosynthetic microorganisms were developed in a sequencing batch reactor (SBR) system using POME. A mixed sludge consists of sludge taken from a local sewage treatment oxidation pond, palm oil mill facultative pond treatment system and POME was used as seed sludge. Intermittent supply of light with intensity at 3600 lux was provided for 100 days with an organic loading rate (OLR) of 2.75 kg COD/m3/day, hydraulic retention time (HRT) of 4 hours and superficial air velocity of 2.07 cm/s. The developed biogranules had shown potential in retaining high accumulation of biomass concentration in the reactor (10.5 g/L), good settleability (43.5-102.9 m/h) and improvement in size from 0.5 to 2.0 mm as well as high physical strength at integrity coefficient (IC) of 2 %. The initial structure of sludge changed from dispersed loose shaped into denser, compact and more stable structure with sludge volume index (SVI) maintained between 10.30 to 14.80 mL/g SS leading to a good solid-liquid separation compared to conventional activated sludge. Also, the chemical oxygen demand (COD), nitrogen (N) and phosphorus (P) removal of 26 %, 21 % and 62 % were achieved during the development of the biogranules. The pigment analysis indicated the presence of the bacteriochlorophyll a implying the presence of purple photosynthetic bacteria. Molecular identification of the bacteria showed the presence of Enterobacter cloacae, Bacillus cereus, Lysinibacillus sp. which possess photosynthetic pigments. For CO2 reduction using the biogranules, approximately 18 to 21 % of CO2 removal was achieved due to possible formation of calcite were observed with FESEM-EDX. The biogranules had achieved a CO2 biofixation rate at approximately 0.234 g/L/day in a week while using the regression analysis; the maximum CO2 biofixation rate in a year was estimated at 1.733 g/L/day.
first_indexed 2024-03-05T20:19:41Z
format Thesis
id utm.eprints-79055
institution Universiti Teknologi Malaysia - ePrints
language English
last_indexed 2024-03-05T20:19:41Z
publishDate 2017
record_format dspace
spelling utm.eprints-790552018-09-27T05:21:07Z http://eprints.utm.my/79055/ Biogranules containing photosynthetic bacteria for carbon dioxide reduction in palm oil mill effluent treatment Mohamed Najib, Mohamed Zuhaili TA Engineering (General). Civil engineering (General) Presently global warming is the most highlighted subjects in environmental issues which is related to greenhouse gases (GHG) emissions especially carbon dioxide (CO2). In Malaysia, one of the major sources of GHG is from industrial wastewater treatment such as ponding system to treat palm oil mill effluent (POME) where the accumulation of these gases will contribute to the greenhouse effect causing global warming. Since photosynthetic process offers the most effective and natural way of sequestering CO2, biogranules containing photosynthetic microorganisms were developed in a sequencing batch reactor (SBR) system using POME. A mixed sludge consists of sludge taken from a local sewage treatment oxidation pond, palm oil mill facultative pond treatment system and POME was used as seed sludge. Intermittent supply of light with intensity at 3600 lux was provided for 100 days with an organic loading rate (OLR) of 2.75 kg COD/m3/day, hydraulic retention time (HRT) of 4 hours and superficial air velocity of 2.07 cm/s. The developed biogranules had shown potential in retaining high accumulation of biomass concentration in the reactor (10.5 g/L), good settleability (43.5-102.9 m/h) and improvement in size from 0.5 to 2.0 mm as well as high physical strength at integrity coefficient (IC) of 2 %. The initial structure of sludge changed from dispersed loose shaped into denser, compact and more stable structure with sludge volume index (SVI) maintained between 10.30 to 14.80 mL/g SS leading to a good solid-liquid separation compared to conventional activated sludge. Also, the chemical oxygen demand (COD), nitrogen (N) and phosphorus (P) removal of 26 %, 21 % and 62 % were achieved during the development of the biogranules. The pigment analysis indicated the presence of the bacteriochlorophyll a implying the presence of purple photosynthetic bacteria. Molecular identification of the bacteria showed the presence of Enterobacter cloacae, Bacillus cereus, Lysinibacillus sp. which possess photosynthetic pigments. For CO2 reduction using the biogranules, approximately 18 to 21 % of CO2 removal was achieved due to possible formation of calcite were observed with FESEM-EDX. The biogranules had achieved a CO2 biofixation rate at approximately 0.234 g/L/day in a week while using the regression analysis; the maximum CO2 biofixation rate in a year was estimated at 1.733 g/L/day. 2017 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/79055/1/MohamedZuhailiMohamedPFKA2017.pdf Mohamed Najib, Mohamed Zuhaili (2017) Biogranules containing photosynthetic bacteria for carbon dioxide reduction in palm oil mill effluent treatment. PhD thesis, Universiti Teknologi Malaysia, Faculty of Civil Engineering.
spellingShingle TA Engineering (General). Civil engineering (General)
Mohamed Najib, Mohamed Zuhaili
Biogranules containing photosynthetic bacteria for carbon dioxide reduction in palm oil mill effluent treatment
title Biogranules containing photosynthetic bacteria for carbon dioxide reduction in palm oil mill effluent treatment
title_full Biogranules containing photosynthetic bacteria for carbon dioxide reduction in palm oil mill effluent treatment
title_fullStr Biogranules containing photosynthetic bacteria for carbon dioxide reduction in palm oil mill effluent treatment
title_full_unstemmed Biogranules containing photosynthetic bacteria for carbon dioxide reduction in palm oil mill effluent treatment
title_short Biogranules containing photosynthetic bacteria for carbon dioxide reduction in palm oil mill effluent treatment
title_sort biogranules containing photosynthetic bacteria for carbon dioxide reduction in palm oil mill effluent treatment
topic TA Engineering (General). Civil engineering (General)
url http://eprints.utm.my/79055/1/MohamedZuhailiMohamedPFKA2017.pdf
work_keys_str_mv AT mohamednajibmohamedzuhaili biogranulescontainingphotosyntheticbacteriaforcarbondioxidereductioninpalmoilmilleffluenttreatment